A scientific and comprehensive analysis of the current status and trends in the field of cancer-associated fibroblast (CAF) research is worth investigating. This study aims to investigate and visualize the development, research frontiers, and future trends in CAFs both quantitatively and qualitatively based on a bibliometric approach.A total of 5518 publications were downloaded from the Science Citation Index Expanded of Web of Science Core Collection from 1999 to 2021 and identified for bibliometric analysis. Visualized approaches, OriginPro (version 9.8.0.200) and R (version 4.2.0) software tools were used to perform bibliometric and knowledge-map analysis.The number of publications on CAFs increased each year, and the same tendency was observed in the RRI. Apart from China, the countries with the largest number of publications and the most cited frequency were mainly Western developed countries, especially the USA. Cancers was the journal with the largest number of articles published in CAFs, and Oncology was the most popular research orientation. The most productive author was Lisanti MP, and the University of Texas System was ranked first in the institutions. In addition, the topics of CAFs could be divided into five categories, including tumor classification, prognostic study, oncologic therapies, tumor metabolism and tumor microenvironment.This is the first thoroughly scientific bibliometric analysis and visualized study of the global research field on CAFs over the past 20 years. The study may provide benefits for researchers to master CAFs' dynamic evolution and research trends.
ChatGPT, powered by the GPT model and Transformer architecture, has demonstrated remarkable performance in the domains of medicine and healthcare, providing customized and informative responses. In our study, we investigated the potential of ChatGPT in the field of neurosurgery, focusing on its applications at the patient, neurosurgery student/resident, and neurosurgeon levels.The authors conducted inquiries with ChatGPT from the viewpoints of patients, neurosurgery students/residents, and neurosurgeons, covering a range of topics, such as disease diagnosis, treatment options, prognosis, rehabilitation, and patient care. The authors also explored concepts related to neurosurgery, including fundamental principles and clinical aspects, as well as tools and techniques to enhance the skills of neurosurgery students/residents. Additionally, the authors examined disease-specific medical interventions and the decision-making processes involved in clinical practice.The authors received individual responses from ChatGPT, but they tended to be shallow and repetitive, lacking depth and personalization. Furthermore, ChatGPT may struggle to discern a patient's emotional state, hindering the establishment of rapport and the delivery of appropriate care. The language used in the medical field is influenced by technical and cultural factors, and biases in the training data can result in skewed or inaccurate responses. Additionally, ChatGPT's limitations include the inability to conduct physical examinations or interpret diagnostic images, potentially overlooking complex details and individual nuances in each patient's case. Moreover, its absence in the surgical setting limits its practical utility.Although ChatGPT is a powerful language model, it cannot substitute for the expertise and experience of trained medical professionals. It lacks the capability to perform physical examinations, make diagnoses, administer treatments, establish trust, provide emotional support, and assist in the recovery process. Moreover, the implementation of Artificial Intelligence in healthcare necessitates careful consideration of legal and ethical concerns. While recognizing the potential of ChatGPT, additional training with comprehensive data is necessary to fully maximize its capabilities.
Currently, the oncogenic mechanism of endoplasmic reticulum stress-CAF (ERS-CAF) subpopulation in chordoma remains unknown. Here, single-cell RNA sequencing, spatial transcriptomics, GeoMx Digital Spatial Profiler, data-independent acquisition proteomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence are used to unveil the precise molecular mechanism of how ERS-CAF affected chordoma progression. Results show that hypoxic microenvironment reprograms CAFs into ERS-CAF subtype. Mechanistically, this occurrs via hypoxia-mediated transcriptional upregulation of IER2. Overexpression of IER2 in CAFs promotes chordoma progression, which can be impeded by IER2 knockdown or use of ERS inhibitors. IER2 also induces expression of ERS-CAF marker genes and results in production of a pro-tumorigenic paracrine GMFG signaling, which exert its biological function via directly binding to ITGB1 on tumor cells. ITGB1 inhibition attenuates tumor malignant progression, which can be partially reversed by exogenous GMFG intervention. Further analyses reveal a positive correlation between ITGB1
aDepartment of Spine Surgery, Hunan Aerospace Hospital, Changsha, 410205, Hunan, China bMusculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing 100044, China cNational Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article. Published online ■ ■ *Corresponding author. Address: Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China. Tel.: +(86)-1088326666; fax: +(86)-1066853666. E-mail: [email protected] (B.-W. Zheng). This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc/4.0/
Abstract Background With cancer-associated fibroblasts (CAFs) as the main cell type, the rich myxoid stromal components in chordoma tissues may likely contribute to its development and progression. Methods Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence (QIF) were used to dissect the heterogeneity, spatial distribution, and clinical implication of CAFs in chordoma. Results We sequenced here 72 097 single cells from 3 primary and 3 recurrent tumor samples, as well as 3 nucleus pulposus samples as controls using scRNA-seq. We identified a unique cluster of CAF in recurrent tumors that highly expressed hypoxic genes and was functionally enriched in endoplasmic reticulum stress (ERS). Pseudotime trajectory and cell communication analyses showed that this ERS-CAF subpopulation originated from normal fibroblasts and widely interacted with tumoral and immune cells. Analyzing the bulk RNA-seq data from 126 patients, we found that the ERS-CAF signature score was associated with the invasion and poor prognosis of chordoma. By integrating the results of scRNA-seq with spatial transcriptomics, we demonstrated the existence of ERS-CAF in chordoma tissues and revealed that this CAF subtype displayed the most proximity to its surrounding tumor cells. In subsequent QIF validation involving 105 additional patients, we confirmed that ERS-CAF was abundant in the chordoma microenvironment and located close to tumor cells. Furthermore, both ERS-CAF density and its distance to tumor cells were correlated with tumor malignant phenotype and adverse patient outcomes. Conclusions These findings depict the CAF landscape for chordoma and may provide insights into the development of novel treatment approaches.