Four commercial disinfectants were chosen for being generally accepted as effective against ASFV. Only two of them, based on sodium hypochlorite and potassium peroxymonosulfate, confirmed their effectiveness in selected concentrations. Taken together, our data supports the effectivenes of chemical disinfectants containing sodium hypochlorite (1%, 0.5% in low level soiling) and potassium peroxymonosulfate (1% in high level soiling). Furthermore, these results highlight the importance of pre-cleaning steps to remove soiling before proper disinfection which improves the effectiveness of tested disinfectants.
The current African swine fever (ASF) epizootic in Europe and Asia has clearly highlighted the crucial role of effective biosecurity in preventing and controlling infectious diseases and in ensuring a high health status of the herd. The role of feed in the mechanical transmission of viral pathogens has long remained unclear, but the unexpected emergence of porcine epidemic diarrhea (PED) in the United States in 2013 led to intensified research efforts aimed at determining the origin of PEDV. Since then, it has been proven that feed and feed materials can play a role of mechanical vectors for many pathogens, including PEDV, ASFV, FMDV, PRV, PRRSV, PVDV, PCV2, CSV and PRV. In light of the potential risk of virus transmission via imported contaminated feed, a number of preventive measures have been developed and experimentally proven to be effective in mitigating the risk. The aim of this study is to summarize the current knowledge on the potential role of feed in the spread of porcine viral pathogens and on the latest efforts aimed at reducing the risk of such transmission.
African swine fever (ASF) causes huge economic losses and is one of most dangerous diseases of pigs. The disease is known for almost 100 years, an effective vaccine or treatment is still unavailable, only proper biosecurity measures, including disinfection, are being applied, in order to prevent disease outbreaks. Eight active substances, i.e., formaldehyde, sodium hypochlorite, caustic soda, glutaraldehyde, phenol, benzalkonium chloride, potassium peroxymonosulfate and acetic acid, were tested, in order to confirm their effectiveness against African swine fever virus (ASFV). This specific selection was done based on the World Organisation for Animal Health (OIE)’s recommendation and previous disinfectant studies on surfaces. The result of our study shows that most of them inactivate the virus, in recommended concentrations. In order to reduce the cytotoxicity of the four substances, Microspin S-400 HR columns were applied, therefore making it possible to demonstrate four logarithms virus titer reduction. Sodium hypochlorite, glutaraldehyde, caustic soda and potassium peroxymonosulfate showed the best ASFV inactivation rates, achieving titer reductions over 5 logs. Despite microfiltration, the virucidal activity of formaldehyde was not assessable, due to its high cytotoxicity. Our results showed that cleaning is particularly important, because removal of the soiling provides improved effectiveness of the tested chemical compounds.
This paper was aimed to characterize clinical signs and pathomorphological lesions in twenty-two pigs, infected intranasally by different doses of African swine fever virus (Pol18_28298_O111), isolated during the outbreak in a pig farm that occurred in Eastern Poland throughout 2018. This article also attempts to indicate risk, related to virus load and shedding, and present possible difficulties with proper disease recognition at the farm level. The results revealed that even a very low dose (5 HAU) may initiate the infection. Various forms of the disease (acute, subacute, and chronic), mainly with prodromal clinical signs like fever, apathy, and reduced feed intake were observed. The most frequently observed lesions (82%) were: hyperemia and enlargement of lymph nodes and splenomegaly. The minimal incubation period was estimated at five days post-infection (dpi). Mortality ranged from 80–100%. Two pigs survived the infection. Some viremic animals presented delayed fever. In some cases, the fever was not detectable. Shortly after viremia, the virus was secreted ion the urine, feces, and saliva. The highest levels of virus were found in the internal organs and blood; however in the case of one pig (chronic form), viral DNA was not detected in the spleen, liver, bone marrow, and brain. Veterinary diagnosis may be difficult, and the final results should always be based on laboratory investigations.
Routine genomic surveillance on samples from COVID-19 patients collected in Poland during summer 2021 revealed the emergence of a SARS-CoV-2 Delta variant with a large 872 nt deletion. This change, confirmed by Sanger and deep sequencing, causes complete loss of ORF7a , ORF7b , and ORF8 genes. The index case carrying the deletion is unknown. The standard pipeline for sequencing may mask this deletion with a long stretch of N’s. Effects of this deletion on phenotype or immune evasion needs further study.
The present study attempted to elucidate possible routes leading to the achievement of seropositive results, among young (aged ≤1 year) wild boar population.In the years 2017-2018, the National Reference Laboratory (NRL) for African swine fever (ASF) in Poland examined nearly 27-thousand wild boar blood samples, collected during an active surveillance of ASF risk zones, for the presence of viral DNA and anti-ASFV antibodies.Out of all the examined samples, 420 were positive.However, in more than half of them (292 samples) antibodies against African swine fever virus (ASFV) were detected, while ASFV DNA was not detected in blood.Out of all 292 seropositive/PCR-negative samples, 126 belonged to young wild boars (aged ≤1 year).For this reason, the NRL in Poland has examined 10 selected seropositive wild boar carcasses to confirm or exclude post-mortem lesions for ASF as well as to investigate the presence of viral DNA in the internal organs.Neither pathological lesions for ASF nor the presence of genetic material of ASFV were found in the examined wild boars.To elucidate this outcomes, following hypotheses about possible reasons of the obtained results were drawn: the presence of convalescent animals, infection of low-virulent ASFV isolate and the vertical transmission of antibodies through the colostrum.
Abstract The Omicron variant of the SARS-CoV-2 virus was first detected in South Africa in November 2021. The analysis of the sequence data in the context of earlier variants suggested that it may show very different characteristics, including immune evasion and increased transmission. These assumptions were partially confirmed, and the reduction in protection in convalescent patients and vaccinated individuals have been confirmed. Here, we have evaluated the efficacy of antivirals against SARS-CoV-2 variants, Omicron, Delta, and the early 2020 isolate.
Abstract African swine fever (ASF) is a contagious, notifiable viral disease, which is considered a significant threat not only for European, but also for worldwide pork production, since recently the virus emerged within numerous Chinese pig herds. The disease was introduced in Poland in 2014 and up to the end of 2018, 213 outbreaks in pigs and 3347 cases in wild boars have been reported. The presented study describes the whole genome sequencing of seven Polish isolates, collected between 2016 and 2017, using next generation sequencing (NGS) technology. The complete, genomic sequences of these isolates were compared against five other closely related ASFV genomes, annotated in the NCBI database. The obtained sequences were from 189.393 to 189.405 bp long and encoded 187–190 open reading frames (ORFs). The isolates were grouped within genotype II and showed 99.941 to 99.956% nucleotide identity to the Georgia 2007/1 reference strain.
Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78-99.80%.