ABSTRACT The Pelagibacterales order (SAR11) in Alphaproteobacteria dominates marine surface bacterioplankton communities, where it plays a key role in carbon and nutrient cycling. SAR11 phages, known as pelagiphages, are among the most abundant phages in the ocean. Four pelagiphages that infect Pelagibacter HTCC1062 have been reported. Here we report 11 new pelagiphages in the Podoviridae family. Comparative genomic analysis revealed that they are all closely related to previously reported pelagiphages HTVC011P and HTVC019P, in the HTVC019Pvirus genus. HTVC019Pvirus pelagiphages share a core genome of 15 genes, with a pan-genome of 234 genes. Phylogenomic analysis clustered these pelagiphages into three subgroups. Integrases were identified in all but one pelagiphage genomes. Evidence of site-specific integration was obtained by high-throughput sequencing and sequencing PCR amplicons containing predicted integration sites, demonstrating the capacity of these pelagiphages to propagate by both lytic and lysogenic infection. HTVC019P, HTVC021P, HTVC022P, HTVC201P and HTVC121P integrate into tRNA-Cys genes. HTVC011P, HTVC025P, HTVC105P, HTVC109P, HTVC119P and HTVC200P target tRNA-Leu genes, while HTVC120P integrates into the tRNA-Arg. Evidence of pelagiphage integration was also retrieved from Global Ocean Survey (GOS) database, suggesting the occurrence of pelagiphage integration in situ . The capacity of HTVC019Pvirus pelagiphages to integrate into host genomes suggests they could impact SAR11 populations by a variety of mechanisms, including mortality, genetic transduction, and prophage-induced viral immunity. HTVC019Pvirus pelagiphages are a rare example of a lysogenic phage that can be implicated in ecological processes on broad scales, and thus have potential to become a useful model for investigating strategies of host infection and phage-dependent horizontal gene transfer. IMPORTANCE Pelagiphages are ecologically important because of their extraordinarily high census numbers, which makes them potentially significant agents in the viral shunt, a concept that links viral predation to the recycling of dissolved organic matter released from lysing plankton cells. Lysogenic Pelagiphages, such as the HTVC019Pvirus pelagiphages we investigate here, are also important because of their potential to contribute to the hypothesized processes such as the “Piggy-Back-the-Winner” and “King-of-the-Mountain”. The former explains nonlinearities in virus to host ratios by postulating increased lysogenization of successful host cells, while the latter postulates host-density dependent propagation of defensive alleles. Here we report multiple Pelagiphage isolates, and provided detailed evidence of their integration into SAR11 genomes. The development of this ecologically significant experimental system for studying phage-dependent processes is progress towards the validation of broad hypotheses about phage ecology with specific examples based on knowledge of mechanisms.
SAR11 bacteria dominate ocean surface bacterioplankton communities, and play an important role in marine carbon and nutrient cycling. The biology and ecology of SAR11 are impacted by SAR11 phages (pelagiphages) that are highly diverse and abundant in the ocean. Among the currently known pelagiphages, HTVC010P represents an extremely abundant but under-studied phage group in the ocean. In this study, we have isolated seven new HTVC010P-type pelagiphages, and recovered 77 nearly full-length HTVC010P-type metagenomic viral genomes from marine metagenomes. Comparative genomic and phylogenomic analyses showed that HTVC010P-type pelagiphages display genome synteny and can be clustered into two major subgroups, with subgroup I consisting of strictly lytic phages and subgroup II mostly consisting of phages with potential lysogenic life cycles. All but one member of the subgroup II contain an integrase gene. Site-specific integration of subgroup II HTVC010P-type pelagiphage was either verified experimentally or identified by in silico genomic sequence analyses, which revealed that various SAR11 tRNA genes can serve as the integration sites of HTVC010P-type pelagiphages. Moreover, HTVC010P-type pelagiphage integration was confirmed by the detection of several Global Ocean Survey (GOS) fragments that contain hybrid phage-host integration sites. Metagenomic recruitment analysis revealed that these HTVC010P-type phages were globally distributed and most lytic subgroup I members exhibited higher relative abundance. Altogether, this study significantly expands our knowledge about the genetic diversity, life strategies and ecology of HTVC010P-type pelagiphages.
Abstract Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~ 90% reduction in SAR11 cell abundance within five days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed those cells ‘zombies’ and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.
Replanting disease caused by negative plant-soil feedback in continuous monoculture of Radix pseudostellariae is a critical factor restricting the development of this common and popular Chinese medicine, although wild R. pseudostellariae plants were shown to grow well without occurrence of disease in the same site for multiple years. Therefore, we aimed to identify the changes in microbial community composition in the rhizosphere soil of wild R. pseudostellariae thus providing a potential method for controlling soil-borne diseases. We analyzed differences in soil physicochemical properties, changes in soil microbial community structure, and root exudates of wild R. pseudostellariae under different biotopes. And then, simple sequence repeats amplification was used to isolate and collect significantly different formae speciales of Fusarium oxysporum. Finally, we analyzed the pathogenicity testing and influence of root exudates on the growth of F. oxysporum. We found that the different biotopes of R. pseudostellariae had significant effects on the soil microbial diversity. The soil fungal and bacterial abundances were significantly higher and the abundance of F. oxysporum was significantly lower under the rhizosphere environment of wild R. pseudostellariae than under consecutive monoculture. The relative abundances of most genera were Penicillium, Aspergillus, Fusarium, Nitrobacter, Nitrospira, Streptomyces, Actinoplanes, and Pseudomonas. Venn diagram and LEfSe analyses indicated numerously specific microbiome across all the samples, and the numbers of specific fungi were higher than the shared ones in the four biotopes. Eight types of phenolic acids were identified across all the rhizosphere soils. Mixed phenolic acids and most of the examined single phenolic acids had negative effects on the growth of isolated pathogenic F. oxysporum strains and promoted the growth of non-pathogenic strains. Similarly, correlation analysis suggested that most of the identified phenolic acids were positively associated with beneficial Pseudomonas, Nitrobacter, Nitrospira, Streptomyces, and Bacillus. This study suggested that wild R. pseudostellariae was able to resist or tolerate disease by increasing soil microbial diversity, and reducing the accumulation of soil-borne pathogens.
The marine methylotrophic OM43 clade is considered an important bacterial group in coastal microbial communities. OM43 bacteria, which are closely related to phytoplankton blooms, have small cell sizes and streamlined genomes. Bacteriophages profoundly shape the evolutionary trajectories, population dynamics, and physiology of microbes. The prevalence and diversity of several phages that infect OM43 bacteria have been reported. In this study, we isolated and sequenced two novel OM43 phages, MEP401 and MEP402. These phages share 90% of their open reading frames (ORFs) and are distinct from other known phage isolates. Furthermore, a total of 99 metagenomic viral genomes (MVGs) closely related to MEP401 and MEP402 were identified. Phylogenomic analyses suggest that MEP401, MEP402, and these identified MVGs belong to a novel subfamily in the family Zobellviridae and that they can be separated into two groups. Group I MVGs show conserved whole-genome synteny with MEP401, while group II MVGs possess the MEP401-type DNA replication module and a distinct type of morphogenesis and packaging module, suggesting that genomic recombination occurred between phages. Most members in these two groups were predicted to infect OM43 bacteria. Metagenomic read-mapping analysis revealed that the phages in these two groups are globally ubiquitous and display distinct biogeographic distributions, with some phages being predominant in cold regions, some exclusively detected in estuarine stations, and others displaying wider distributions. This study expands our knowledge of the diversity and ecology of a novel phage lineage that infects OM43 bacteria by describing their genomic diversity and global distribution patterns. IMPORTANCE OM43 phages that infect marine OM43 bacteria are important for host mortality, community structure, and physiological functions. In this study, two OM43 phages were isolated and characterized. Metagenomic viral genome (MVG) retrieval using these two OM43 phages as baits led to the identification of two phage groups of a new subfamily in the family Zobellviridae. We found that group I MVGs share similar genomic content and arrangement with MEP401 and MEP402, whereas group II MVGs only possess the MEP401-type DNA replication module. Metagenomic mapping analysis suggests that members in these two groups are globally ubiquitous with distinct distribution patterns. This study provides important insights into the genomic diversity and biogeography of the OM43 phages in the global ocean.
Summary The Pelagibacterales order (SAR11) in Alphaproteobacteria dominates marine surface bacterioplankton communities, where it plays a key role in carbon and nutrient cycling. SAR11 phages, known as pelagiphages, are among the most abundant phages in the ocean. Four pelagiphages that infect Pelagibacter HTCC1062 have been reported. Here, we report 11 new pelagiphages in the Podoviridae family. Comparative genomics classified these pelagiphages into the HTVC019Pvirus genus, which includes the previously reported pelagiphages HTVC011P and HTVC019P. Phylogenomic analysis clustered HTVC019Pvirus pelagiphages into three subgroups. Integrases were identified in all but one HTVC019Pvirus genome. Site‐specific integration of HTVC019Pvirus pelagiphages into host tRNA genes was verified experimentally, demonstrating the capacity of these pelagiphages to propagate by both lytic and lysogenic infection. Evidence of pelagiphage integration was also retrieved from the Global Ocean Survey database, showing that prophages are found in natural SAR11 populations. HTVC019Pvirus pelagiphages could impact SAR11 populations by a variety of mechanisms, including mortality, genetic transduction and prophage‐induced viral immunity. HTVC019Pvirus pelagiphages are a rare example of cultured lysogenic phage that can be implicated in ecological processes on broad scales. These pelagiphages have the potential to become a useful model for investigating strategies of host infection and phage‐dependent horizontal gene transfer.
The ubiquitous and abundant marine phages play critical roles in shaping the composition and function of bacterial communities, impacting biogeochemical cycling in marine ecosystems. Autographiviridae is among the most abundant and ubiquitous phage families in the ocean. However, studies on the diversity and ecology of Autographiviridae phages in marine environments are restricted to isolates that infect SAR11 bacteria and cyanobacteria. In this study, ten new roseophages that infect marine Roseobacter strains were isolated from coastal waters. These new roseophages have a genome size ranging from 38 917 to 42 634 bp and G+C content of 44.6–50 %. Comparative genomics showed that they are similar to known Autographiviridae phages regarding gene content and architecture, thus representing the first Autographiviridae roseophages. Phylogenomic analysis based on concatenated conserved genes showed that the ten roseophages form three distinct subgroups within the Autographiviridae , and sequence analysis revealed that they belong to eight new genera. Finally, viromic read-mapping showed that these new Autographiviridae phages are widely distributed in global oceans, mostly inhabiting polar and estuarine locations. This study has expanded the current understanding of the genomic diversity, evolution and ecology of Autographiviridae phages and roseophages. We suggest that Autographiviridae phages play important roles in the mortality and community structure of roseobacters, and have broad ecological applications.