Atlantic tarpon (Megalops atlanticus) are capable of long-distance migrations (hundreds of kilometers) but also exhibit resident behaviors in estuarine and coastal habitats. The aim of this study was to characterize the spatial distribution of juvenile tarpon and identify migration pathways of adult tarpon in the northern Gulf of Mexico. Spatial distribution of juvenile tarpon was investigated using gillnet data collected by Texas Parks and Wildlife Department (TPWD) over the past four decades. Generalized additive models (GAMs) indicated that salinity and water temperature played a significant role in tarpon presence, with tarpon occurrences peaking in the fall and increasing over the past four decades in this region. Adult tarpon caught off Texas (n = 40) and Louisiana (n = 4) were tagged with acoustic transmitters to characterize spatial and temporal trends in their movements and migrations. Of the 44 acoustic transmitters deployed, 18 of the individuals were detected (n = 16 west of the Mississippi River Delta and n = 2 east of the Mississippi River Delta). Tarpon tagged west of the Mississippi River Delta off Texas migrated south in the fall and winter into areas of south Texas and potentially into Mexico, while individuals tagged east of the delta migrated into Florida during the same time period, suggesting the presence of two unique migratory contingents or subpopulations in this region. An improved understanding of the habitat requirements and migratory patterns of tarpon inhabiting the Gulf of Mexico is critically needed by resource managers to assess the vulnerability of each contingent to fishing pressure, and this information will guide multi-state and multi-national conservation efforts to rebuild and sustain tarpon populations.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
Abstract Geochemical chronologies were constructed from otoliths of adult Pacific bluefin tuna (PBT) to investigate the timing of age-specific egress of juveniles from coastal nurseries in the East China Sea or Sea of Japan to offshore waters of the Pacific Ocean. Element:Ca chronologies were developed for otolith Li, Mg, Mn, Zn, Sr, and Ba, and our assessment focused on the section of the otolith corresponding to the age-0 to age-1 + interval. Next, we applied a common time-series approach to geochemical profiles to identify divergences presumably linked to inshore-offshore migrations. Conspicuous geochemical shifts were detected during the juvenile interval for Mg:Ca, Mn:Ca, and Sr:Ca that were indicative of coastal-offshore transitions or egress generally occurring for individuals approximately 4–6 mo. old, with later departures (6 mo. or older) linked to overwintering being more limited. Changepoints in otolith Ba:Ca profiles were most common in the early age-1 period (ca. 12–16 mo.) and appear associated with entry into upwelling areas such as the California Current Large Marine Ecosystem following trans-Pacific migrations. Natal origin of PBT was also predicted using the early life portion of geochemical profile in relation to a baseline sample comprised of age-0 PBT from the two primary spawning areas in the East China Sea and Sea of Japan. Mixed-stock analysis indicated that the majority (66%) of adult PBT in our sample originated from the East China Sea, but individuals of Sea of Japan origin were also detected in the Ryukyu Archipelago.
Dynamic influences of ocean processes on distribution, abundance, and diversity of zooplankton communities were studied over the continental shelf in the northern Gulf of Mexico (GoM) from 2015 to 2017. Zooplankton sampling was conducted on four summer cruises in the northcentral GoM. Sampling was designed in waters potentially influenced by the Loop Current (LC) and/or Mississippi River discharge to assess the impacts of these two mesoscale features on the abundance and diversity of zooplankton. During the three-year study, the LC displayed distinct spatial-temporal variations in penetration and occurrence in the northern GoM. Environmental conditions (e.g., sea surface temperature, salinity, and dissolved oxygen) varied between months and years sampled, and were significantly different among cruises (ANOVA, p < 0.001). The majority of zooplankton consisted of calanoid copepods (65% ± 7.2%, mean ± SD), while non-copepod taxa were primarily chaetognaths, polychaetes, tunicates, and ostracods (23 ± 9.2%). Species abundance and diversity of zooplankton were significantly correlated with sea surface temperature, salinity, and dissolved oxygen (p < 0.05). Canonical correspondence analysis displayed significant associations between mesoscale features and dominant zooplankton groups among cruises and by taxa (Monte Carlo Permutation Test, p < 0.001). In addition, non-metric multidimensional scaling indicated that zooplankton assemblages were distinct, likely caused by Mississippi River plumes during the study period. As one of the few efforts to examine zooplankton dynamics at a low taxon level over the GoM continental shelf regarding the impact of mesoscale features, this study revealed seasonal (i.e. summer) and spatial patterns in distribution, abundance, and diversity of zooplankton communities subjected to the dynamic physicochemical conditions in the northern GoM, which will continue in a changing climate.
Abstract Snowy Grouper Hyporthodus niveatus are long‐lived, slow‐growing demersal fish that occur throughout most of the western Atlantic Ocean. Currently, Snowy Grouper in U.S. territorial waters are managed as two stocks, one along the eastern Atlantic coast and one in the Gulf of Mexico (GoM), though population connectivity throughout the region is unknown. The population structure of juvenile Snowy Grouper in U.S. territorial waters was assessed with otolith chemistry analysis, both trace element ( 7 Li, 24 Mg, 55 Mn, 88 Sr, and 137 Ba) and stable isotope (δ 13 C and δ 18 O), from three life stages (core [first‐year deposition], edge [most recent deposition], and life [mean of lifetime deposition]) across four geographic regions (northwest GoM, northeast GoM, southeast GoM, and U.S. East Coast). Dissimilar element : Ca signatures were evident across regions for all three life history stages, with regional patterns in individual markers following expected differences in environmental chemistry based on the geographic location of dominant mesoscale features (Mississippi and Atchafalaya River system, Loop Current, and Gulf Stream) and associated physicochemical conditions. Moderate classification success of Snowy Grouper to collection region with lifetime signatures indicated that the population along the U.S. East Coast experienced different physicochemical conditions than individuals inhabiting the GoM. The close adherence in regional patterns of otolith chemistry with expected environmental chemistry indicates that movement of individuals is limited and population connectivity constrained in U.S. territorial waters.
Abstract Natural geochemical markers in the otolith of yellowfin tuna ( Thunnus albacares ) were used to establish nursery-specific signatures for investigating the origin of fish captured in the western Atlantic Ocean (WAO). Two classes of chemical markers (trace elements, stable isotopes) were used to first establish nursery-specific signatures of age-0 yellowfin tuna from four primary production zones in the Atlantic Ocean: Gulf of Mexico, Caribbean Sea, Cape Verde, and Gulf of Guinea. Next, mixture and individual assignment methods were applied to predict the origin of sub-adult and adult yellowfin tuna from two regions in the WAO (Gulf of Mexico, Mid Atlantic Bight) by relating otolith core signatures (corresponding to age-0 period) to baseline signatures of age-0 fish from each nursery. Significant numbers of migrants from Caribbean Sea and eastern Atlantic Ocean (EAO) production zones (Gulf of Guinea, Cape Verde) were detected in the WAO, suggesting that fisheries in this region were subsidized by outside spawning/nursery areas. Contributions from local production (Gulf of Mexico) were also evident in samples from both WAO fisheries, but highly variable from year to year. High levels of mixing by yellowfin tuna from the different production zones and pronounced interannual trends in nursery-specific contribution rates in the WAO emphasize the complex and dynamic nature of this species’ stock structure and population connectivity. Given that geographic shifts in distribution across national or political boundaries leads to governance and management challenges, this study highlights the need for temporally resolved estimates of nursery origin to refine assessment models and promote the sustainable harvest of this species.
Abstract Age‐0 red snapper Lutjanus campechanus from the 2005–2007 year‐classes were sampled in six regions across the Gulf of Mexico (Gulf) to develop nursery signatures from otolith element: Ca ratios (Ba:Ca, Mg:Ca, Mn:Ca, Sr:Ca, and Li:Ca) and stable isotope delta values (δ 13 C and δ 18 O). Element: Ca ratios were analyzed with sector field inductively coupled plasma mass spectrometry on dissolved right sagittae; isotope ratio mass spectrometry was employed to analyze pulverized left otoliths for δ 13 C and δ 18 O. Otolith chemical signatures were significantly different among regions in each year. Year‐class‐specific quadratic discriminant function analysis (QDFA) distinguished nursery regions with an accuracy of 82% for 2005, 70% for 2006, and 72% for 2007. However, samples were not obtained from all six study regions in 2005 and 2006. A QDFA of all year‐classes combined produced an overall classification accuracy of 70%, thus indicating that region‐specific otolith chemical signatures from adjacent sampling years could be used as surrogates for regions where samples were not obtained in a given year. Received February 7, 2012; accepted June 5, 2012