Cyclophilins are a group of highly conserved cytosolic enzymes that have a peptidylprolyl cis/trans isomerase activity. Cyclophilin A (CyPA) can be secreted in the extracellular space by inflammatory cells and upon cell death. The presence of CyPA in patients with non-ischemic cardiomyopathy is associated with poor clinical prognosis. Here, we investigated the inhibition of extracellular CyPA in a mouse model of troponin I-induced autoimmune myocarditis using the strictly extracellular CyPA-inhibitor MM284. Since A/J mice develop severe inflammation and fibrosis after immunization with murine cardiac troponin I (mcTn I), we used this model to analyze the effects of an extracellular CyPA inhibition. As extracellular CyPA-inhibitor we used the recently described CsA-derivate MM284. In vitro studies confirmed that MM284 inhibits CyPA-induced monocytic migration and adhesion. A/J mice immunized with mcTnI were treated with MM284 or vehicle every second day. After 28 days, we found a considerable reduction of myocardial injury and fibrosis. Further analysis revealed a reduced myocardial presence of T-cells and macrophages compared to control treated animals. Whereas MMP-9 expression was reduced significantly by MM284, we observed no significant reduction of inflammatory cytokines such as IL-6 or TNFα. Extracellular CyPA plays an important role in autoimmune myocarditis for myocardial damage and fibrosis. Our data suggest a new pharmacological approach for the treatment of myocardial inflammation and reduction of cardiac fibrosis by inhibition of extracellular CyPA.
Platelets play a significant role in atherothrombosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is critically involved in the regulation of LDL metabolism and interacts with platelet function. The effect of PCSK9 in platelet function is poorly understood. The authors of this article sought to characterize platelets as a major source of PCSK9 and PCSK9's role in atherothrombosis. In a large cohort of patients with coronary artery disease (CAD), platelet count, platelet reactivity, and platelet-derived PCSK9 release were analyzed. The role of platelet PCSK9 on platelet and monocyte function was investigated in vitro. Platelet count and hyper-reactivity correlated with plasma LDL in CAD. The circulating platelets express on their surface and release substantial amounts of PCSK9. Release of PCSK9 augmented platelet-dependent thrombosis, monocyte migration, and differentiation into macrophages/foam cells. Platelets and PCSK9 accumulated in tissue derived from atherosclerotic carotid arteries in areas of macrophages. PCSK9 inhibition reduced platelet activation and platelet-dependent thrombo-inflammation. The authors identified platelets as a source of PCSK9 in CAD, which may have an impact on LDL metabolism. Furthermore, platelet-derived PCSK9 contributes to atherothrombosis, and inhibition of PCSK9 attenuates thrombo-inflammation, which may contribute to the reported beneficial clinical effects.
Genetic predisposition through F11R-single-nucleotide variation (SNV) influences circulatory soluble junctional adhesion molecule-A (sJAM-A) levels in coronary artery disease (CAD) patients. Homozygous carriers of the minor alleles (F11R-SNVs rs2774276, rs790056) show enhanced levels of thrombo-inflammatory sJAM-A. Both F11R-SNVs and sJAM-A are associated with worse prognosis for recurrent myocardial infarction in CAD patients. Platelet surface-associated JAM-A correlate with platelet activation markers in CAD patients. Activated platelets shed transmembrane-JAM-A, generating proinflammatory sJAM-A and JAM-A-bearing microparticles. Platelet transmembrane-JAM-A and sJAM-A as homophilic interaction partners exaggerate thrombotic and thrombo-inflammatory platelet monocyte interactions. Therapeutic strategies interfering with this homophilic interface may regulate thrombotic and thrombo-inflammatory platelet response in cardiovascular pathologies where circulatory sJAM-A levels are elevated.
The Orf virus (ORFV), a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep). Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained.Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I) as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes.The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.
Cardiovascular risk factors and comorbidities are highly prevalent among COVID-19 patients and are associated with worse outcomes.We therefore investigated if established cardiovascular risk assessment models could efficiently predict adverse outcomes in COVID-19. Furthermore, we aimed to generate novel risk scores including various cardiovascular parameters for prediction of short- and midterm outcomes in COVID-19.We included 441 consecutive patients diagnosed with SARS-CoV-2 infection. Patients were followed-up for 30 days after the hospital admission for all-cause mortality (ACM), venous/arterial thromboembolism, and mechanical ventilation. We further followed up the patients for post-COVID-19 syndrome for 6 months and occurrence of myocarditis, heart failure, acute coronary syndrome (ACS), and rhythm events in a 12-month follow-up. Discrimination performance of DAPT, GRACE 2.0, PARIS-CTE, PREDICT-STABLE, CHA2-DS2-VASc, HAS-BLED, PARIS-MB, PRECISE-DAPT scores for selected endpoints was evaluated by ROC-analysis.Out of established risk assessment models, GRACE 2.0 score performed best in predicting combined endpoint and ACM. Risk assessment models including age, cardiovascular risk factors, echocardiographic parameters, and biomarkers, were generated and could successfully predict the combined endpoint, ACM, venous/arterial thromboembolism, need for mechanical ventilation, myocarditis, ACS, heart failure, and rhythm events. Prediction of post-COVID-19 syndrome was poor.Risk assessment models including age, laboratory parameters, cardiovascular risk factors, and echocardiographic parameters showed good discrimination performance for adverse short- and midterm outcomes in COVID-19 and outweighed discrimination performance of established cardiovascular risk assessment models.
Different types of immune cells are involved in atherogenesis and may act atheroprotective or atheroprogressive. Here, we describe an in vitro approach to analyze CD11c+ cells and CD11c+-derived ApoE in atherosclerosis. The major steps include harvesting mouse bone marrow, plating cells in culture dishes, treating them with differentiation factors, and collecting cells after removal of undesirable populations. This protocol can be adapted for CD11c+ cells in different contexts, thus, serving as models for different diseases and to analyze cell-specific molecules. For complete details on the use and execution of this protocol, please refer to Sauter et al. (2021).
Hyperlipidemia is associated with platelet hyperactivity. In the present study, we evaluated the binding of oxidized low-density lipoprotein (oxLDL) on the surface of circulating platelets in patients with stable coronary artery disease and acute coronary syndromes and its possible association with platelet activation. Furthermore, the role of oxLDL binding on platelet adhesion to collagen and endothelial cells in vitro as well as after carotid ligation in mice was investigated.Using flow cytometry, patients with acute coronary syndromes (n=174) showed significantly enhanced oxLDL binding compared with patients with stable coronary artery disease (n=182; P=0.007). Platelet-bound oxLDL positively correlated with the degree of platelet activation (expression of P-selectin and activated fibrinogen receptor; P<0.001 for both). Plasma oxLDL was increased in patients with acute coronary syndromes compared with stable angina pectoris patients. Preincubation of isolated platelets with oxLDL, but not with native LDL, resulted in enhanced platelet adhesion to collagen and activated endothelial cells under high shear stress in vitro, as well as after carotid ligation in C57BL/6J mice and apolipoprotein E(-/-) mice fed a high cholesterol diet.Increased platelet-bound oxLDL in patients with acute coronary syndromes may play an important role in atherothrombosis, thus providing a potential future therapeutic target.
Abstract Recent evidence suggests interaction of platelets with dendritic cells (DCs), while the molecular mechanisms mediating this heterotypic cell cross-talk are largely unknown. We evaluated the role of integrin Mac-1 (αMβ2, CD11b/CD18) on DCs as a counterreceptor for platelet glycoprotein (GP) Ibα. In a dynamic coincubation model, we observed interaction of human platelets with monocyte-derived DCs, but also that platelet activation induced a sharp increase in heterotypic cell binding. Inhibition of CD11b or GPIbα led to significant reduction of DC adhesion to platelets in vitro independent of GPIIbIIIa, which we confirmed using platelets from Glanzmann thrombasthenia patients and transgenic mouse lines on C57BL/6 background (GPIbα−/−, IL4R-GPIbα-tg, and muMac1 mice). In vivo, inhibition or genetic deletion of CD11b and GPIbα induced a significant reduction of platelet-mediated DC adhesion to the injured arterial wall. Interestingly, only intravascular antiCD11b inhibited DC recruitment, suggesting a dynamic DC–platelet interaction. Indeed, we could show that activated platelets induced CD11b upregulation on Mg2+-preactivated DCs, which was related to protein kinase B (Akt) and dependent on P-selectin and P-selectin glycoprotein ligand 1. Importantly, specific pharmacological targeting of the GPIbα–Mac-1 interaction site blocked DC–platelet interaction in vitro and in vivo. These results demonstrate that cross-talk of platelets with DCs is mediated by GPIbα and Mac-1, which is upregulated on DCs by activated platelets in a P-selectin glycoprotein ligand 1–dependent manner.