ISHS II International Symposium on Human Health Effects of Fruits and Vegetables: FAVHEALTH 2007 PHENOLICS IN PEACHES AND PLUMS PREFERENTIALLY SUPPRESS THE GROWTH OF ESTROGEN-INDEPENDENT MDA-MB-435 BREAST CANCER CELLS
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds modulate several endocrine systems by altering hormone synthesis, enhancing ligand metabolism, and down-regulating receptor levels/binding activity. Previous studies have demonstrated that TCDD inhibits the 17β-estradiol (E2)-induction of pS2, a human breast cancer prognostic marker. This inhibition occurs at the gene expression level and is Ah receptor (AhR)-mediated. Analysis of the 5' regulatory region has identified three motifs which resemble dioxin response element (DRE) core sequences. pS2-regulated luciferase deletion constructs identified the DRE-like motif located at −527 to −514 as being required for TCDD-mediated suppression. A point mutation within this core motif (T-518C) abolished the inhibition by TCDD while UV-induced protein−DNA cross-linking and competitive gel retardation assays demonstrated AhR complex binding to this motif. Further study of this region also revealed an adjacent putative AP-1 site, diverging by one base pair from the consensus sequence. Gel retardation assays using TPA-treated MCF-7 cell nuclear extracts showed an induced complex binding to the AP-1-like site. Competition studies and antibody supershifts confirmed that the retarded complex consists of AP-1-like proteins. pS2-regulated luciferase constructs containing mutations specific to the AP-1-like motif greatly diminished the inducibility in response to E2. These results suggest that an interaction between AhR complexes and AP-1-like proteins may be responsible for TCDD-mediated inhibition of E2-induced pS2 expression.
Treatment of estrogen receptor (ER)-negative MDA-MB-468 human breast cancer cells with 10 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced formation of a nuclear aryl hydrocarbon (Ah) receptor complex as determined by ligand-binding and gel electrophoretic mobility shift assays. TCDD also induced CYP1A1-dependent activity in MDA-MB-468 cells, which represents the first ER-negative Ah receptor-positive human breast cancer cell line that has been identified. Treatment of this cell line with TCDD and related compounds also caused a 50% inhibition of cell growth, which resembled the growth inhibitory effects previously reported for epidermal growth factor (EGF). However, EGF expression is minimal in this cell line and is not induced by TCDD; moreover, EGF and TCDD induced a different pattern of oncogene expression and apoptosis in MDA-MB-468 cells. In contrast, TCDD caused a rapid and sustained induction of transforming growth factor alpha (TGF alpha) gene expression and secreted protein (nearly 2-fold); moreover, the growth-inhibitory effects of TCDD could be blocked by antibodies to the EGF receptor. In a separate experiment, it was shown that TGF alpha also inhibited growth of MDA-MB-468 cells. The results of this study indicate that the mechanism of growth inhibition of MDA-MB-468 cells by TCDD is due to induction of TGF alpha, which is a potent antimitogen in this cell breast cancer line.
Abstract The functionally differentiated mammary gland adapts to extreme levels of stress from increased demand for energy by activating specific protective mechanisms to support neonatal health. Here, we identify the breast tumor suppressor gene, single-minded 2 s (SIM2s) as a novel regulator of mitophagy, a key component of this stress response. Using tissue-specific mouse models, we found that loss of Sim2 reduced lactation performance, whereas gain (overexpression) of Sim2s enhanced and extended lactation performance and survival of mammary epithelial cells (MECs). Using an in vitro model of MEC differentiation, we observed SIM2s is required for Parkin-mediated mitophagy, which we have previously shown as necessary for functional differentiation. Mechanistically, SIM2s localizes to mitochondria to directly mediate Parkin mitochondrial loading. Together, our data suggest that SIM2s regulates the rapid recycling of mitochondria via mitophagy, enhancing the function and survival of differentiated MECs.
<div>Abstract<p>Approximately 70% of all breast cancers are estrogen receptor–positive (ER<sup>+</sup> breast cancer), and endocrine therapy has improved survival for patients with ER<sup>+</sup> breast cancer. However, up to half of these tumors recur within 20 years. Recurrent ER<sup>+</sup> breast cancers develop resistance to endocrine therapy; thus, novel targets are needed to treat recurrent ER<sup>+</sup> breast cancer. Here we report that semaphorin 7A (SEMA7A) confers significantly decreased patient survival rates in ER<sup>+</sup> breast cancer. SEMA7A was hormonally regulated in ER<sup>+</sup> breast cancer, but its expression did not uniformly decrease with antiestrogen treatments. Additionally, overexpression of SEMA7A in ER<sup>+</sup> cell lines drove increased <i>in vitro</i> growth in the presence of estrogen deprivation, tamoxifen, and fulvestrant. <i>In vivo</i>, SEMA7A conferred primary tumor resistance to fulvestrant and induced lung metastases. Prosurvival signaling was identified as a therapeutic vulnerability of ER<sup>+</sup>SEMA7A<sup>+</sup> tumors. We therefore propose that targeting this pathway with inhibitors of survival signaling such as venetoclax may prove efficacious for treating SEMA7A<sup>+</sup> tumors.</p>Significance:<p>SEMA7A predicts for and likely contributes to poor response to standard-of-care therapies, suggesting that patients with SEMA7A<sup>+</sup>ER<sup>+</sup> tumors may benefit from alternative therapeutic strategies.</p></div>
Abstract c-Src is a proto-oncogene involved in signaling that culminates in the control of multiple biological functions. Src is also one of the most frequently upregulated pathways in triple negative breast cancer (TNBC). Dysregulation of Src has been detected in TNBC and is strongly associated with tumor metastasis and poor prognosis. However, even after promising preclinical studies, Src inhibitors did not show major clinical advantage in unselected TNBC populations. Thus, understanding the mechanism of drug resistance to Src inhibition has major clinical significance in TNBC patients. The full activation of Src signature depends on the autophosphorylation at Y419 that allows the substrate to gain access. We have previously published that metastatic TNBC has high energy-dependency to mitochondrial fatty acid beta-oxidation (FAO) and FAO activate Src by inducing autophosphorylation at Y419. However, our recent analysis suggests that as observed with the Src inhibitors, treatment with FAO inhibitors only attenuate the TNBC tumor growth, but do not result in complete regression. Evaluation of their drug resistance mechanism revealed that while short-term inhibition of FAO or Src induces autophagic and apoptotic cell deaths, long-term inhibition results in autophagy-mediated drug resistance and survival. Studies using p53 knocked out TNBC cells confirmed that the autophagy-mediated resistance to Src inhibition is independent of their p53 status. Further analyses suggest that FAO and Src inhibitors increase the phosphorylation of ERK1/2 in TNBC. Treatment with MAPK/ERK inhibitors abolished the FAO or Src inhibitor-mediated autophagy activation. Validation of in vitro findings using in vivo TNBC patient-derived xenograft (PDX) models confirmed that Src inhibition enhances ERK1/2 activity and induces autophagy in TNBC. Overall, our results suggest that long-term FAO or Src inhibition results in ERK-mediated autophagy activation and therapeutic resistance in TNBC. This finding will have major therapeutic impact in the management of currently non-targetable aggressive TNBC. Citation Format: Kwang Hwa Jung, Jun Hyoung Park, Tirupataiah Sirupangi, Dongya Jia, Shivanand Pudakalakatti, Nishant Gandhi, Jessica Elswood, Vasanta Putluri, Chad J. Creighton, Weston Porter, Michael T. Lewis, Xi Chen, Nagireddy Putluri, Pratip K. Bhattacharya, Lee-Jun C. Wong, Gokul M. Das, Benny A. Kaipparettu. Inhibition of mitochondrial reprogramming regulated c-Src in triple-negative breast cancer activates autophagy-mediated survival mechanism [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1331.