ABSTRACT Burkholderia glumae PG1 is a soil-associated motile plant-pathogenic bacterium possessing a cell density-dependent regulation system called quorum sensing (QS). Its genome contains three genes, here designated bgaI1 to bgaI3 , encoding distinct autoinducer-1 (AI-1) synthases, which are capable of synthesizing QS signaling molecules. Here, we report on the construction of B. glumae PG1 Δ bgaI1 , Δ bgaI2 , and Δ bgaI3 mutants, their phenotypic characterization, and genome-wide transcriptome analysis using RNA sequencing (RNA-seq) technology. Knockout of each of these bgaI genes resulted in strongly decreased motility, reduced extracellular lipase activity, a reduced ability to cause plant tissue maceration, and decreased pathogenicity. RNA-seq analysis of all three B. glumae PG1 AI-1 synthase mutants performed in the transition from exponential to stationary growth phase revealed differential expression of a significant number of predicted genes. In comparison with the levels of gene expression by wild-type strain B. glumae PG1, 481 genes were differentially expressed in the Δ bgaI1 mutant, 213 were differentially expressed in the Δ bgaI2 mutant, and 367 were differentially expressed in the Δ bgaI3 mutant. Interestingly, only a minor set of 78 genes was coregulated in all three mutants. The majority of the QS-regulated genes were linked to metabolic activities, and the most pronounced regulation was observed for genes involved in rhamnolipid and Flp pilus biosynthesis and the type VI secretion system and genes linked to a clustered regularly interspaced short palindromic repeat (CRISPR)- cas gene cluster.
Abstract Multidrug-resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis complex (MTBC) strains are a great challenge for tuberculosis (TB) control in India. Still, factors driving the MDR/XDR epidemic in India are not well defined. To address this, whole genome sequencing (WGS) data from 1 852 MTBC strains obtained from patients from a tertiary care hospital laboratory in Mumbai were used for phylogenetic strain classification, resistance prediction, and cluster analysis (12 allele distance threshold). Factors associated with pre-XDR/XDR-TB were defined by odds ratios and a multivariate logistic regression model. Overall, 1 017 MTBC strains were MDR, out of which 57.8 % (n=591) were pre-XDR, and 17.9 % (n=183) were XDR. Lineage 2 (L2) strains represented 41.7 % of the MDR, 77.2 % of the pre-XDR, and 86.3 % of the XDR strains, and were significantly associated with pre-XDR/XDR-TB (P < 0.001). Cluster rates were high among MDR (78 %) and pre-XDR/XDR (85 %) strains with three dominant L2 strain clusters (Cl 1-3) representing half of the pre-XDR and two thirds of the XDR-TB cases. Cl 1 strains accounted for 52.5 % of the XDR MTBC strains. Transmission could be confirmed by identical mutation patterns of particular pre-XDR/XDR strains. As a conclusion high rates of pre-XDR/XDR strains among MDR-TB patients require rapid changes in treatment and control strategies. Transmission of particular pre-XDR/XDR L2 strains is the main driver of the pre-XDR/XDR-TB epidemic. Accordingly, control of the epidemic in the region requires measures with stopping transmission especially of pre-XDR/XDR L2 strains.
ABSTRACT The alphaproteobacterium Sinorhizobium fredii NGR234 has an exceptionally wide host range, as it forms nitrogen-fixing nodules with more legumes than any other known microsymbiont. Within its 6.9-Mbp genome, it encodes two N -acyl-homoserine-lactone synthase genes (i.e., traI and ngrI ) involved in the biosynthesis of two distinct autoinducer I-type molecules. Here, we report on the construction of an NGR234-Δ traI and an NGR234-Δ ngrI mutant and their genome-wide transcriptome analysis. A high-resolution RNA sequencing (RNA-seq) analysis of early-stationary-phase cultures in the NGR234-Δ traI background suggested that up to 316 genes were differentially expressed in the NGR234-Δ traI mutant versus the parent strain. Similarly, in the background of NGR234-Δ ngrI 466 differentially regulated genes were identified. Accordingly, a common set of 186 genes was regulated by the TraI/R and NgrI/R regulon. Coregulated genes included 42 flagellar biosynthesis genes and 22 genes linked to exopolysaccharide (EPS) biosynthesis. Among the genes and open reading frames (ORFs) that were differentially regulated in NGR234-Δ traI were those linked to replication of the pNGR234 a symbiotic plasmid and cytochrome c oxidases. Biotin and pyrroloquinoline quinone biosynthesis genes were differentially expressed in the NGR234-Δ ngrI mutant as well as the entire cluster of 21 genes linked to assembly of the NGR234 type III secretion system (T3SS-II). Further, we also discovered that genes responsible for rhizopine catabolism in NGR234 were strongly repressed in the presence of high levels of N -acyl-homoserine-lactones. Together with nodulation assays, the RNA-seq-based findings suggested that quorum sensing (QS)-dependent gene regulation appears to be of higher relevance during nonsymbiotic growth rather than for life within root nodules.
Abstract Background Mycobacterium abscessus (MAB) is a widely disseminated pathogenic non-tuberculous mycobacterium (NTM). Like with the M. tuberculosis complex (MTBC), excreted / secreted (ES) proteins play an essential role for its virulence and survival inside the host. Here, we used a robust bioinformatics pipeline to predict the secretome of the M. abscessus ATCC 19977 reference strain and 15 clinical isolates belonging to all three MAB subspecies, M. abscessus subsp. abscessus , M. abscessus subsp. bolletii , and M. abscessus subsp. massiliense . Results We found that ~ 18% of the proteins encoded in the MAB genomes were predicted as secreted and that the three MAB subspecies shared > 85% of the predicted secretomes. MAB isolates with a rough (R) colony morphotype showed larger predicted secretomes than isolates with a smooth (S) morphotype. Additionally, proteins exclusive to the secretomes of MAB R variants had higher antigenic densities than those exclusive to S variants, independent of the subspecies. For all investigated isolates, ES proteins had a significantly higher antigenic density than non-ES proteins. We identified 337 MAB ES proteins with homologues in previously investigated M. tuberculosis secretomes. Among these, 222 have previous experimental support of secretion, and some proteins showed homology with protein drug targets reported in the DrugBank database. The predicted MAB secretomes showed a higher abundance of proteins related to quorum-sensing and Mce domains as compared to MTBC indicating the importance of these pathways for MAB pathogenicity and virulence. Comparison of the predicted secretome of M. abscessus ATCC 19977 with the list of essential genes revealed that 99 secreted proteins corresponded to essential proteins required for in vitro growth. Conclusions This study represents the first systematic prediction and in silico characterization of the MAB secretome. Our study demonstrates that bioinformatics strategies can help to broadly explore mycobacterial secretomes including those of clinical isolates and to tailor subsequent, complex and time-consuming experimental approaches accordingly. This approach can support systematic investigation exploring candidate proteins for new vaccines and diagnostic markers to distinguish between colonization and infection. All predicted secretomes were deposited in the Secret-AAR web-server ( http://microbiomics.ibt.unam.mx/tools/aar/index.php ).
Summary Background Pseudomonas aeruginosa is an opportunistic pathogen consisting of three phylogroups (hereafter named A, B, and C) of unevenly distributed size. Here, we assessed phylogroup-specific evolutionary dynamics in a collection of P. aeruginosa genomes. Methods In this genomic analysis, using phylogenomic and comparative genomic analyses, we generated 18 hybrid assemblies from a phylogenetically diverse collection of clinical and environmental P. aeruginosa isolates, and contextualised this information with 1991 publicly available genomes of the same species. We explored to what extent antimicrobial resistance (AMR) genes, defence systems, and virulence genes vary in their distribution across regions of genome plasticity (RGPs) and “masked” (RGP-free) genomes, and to what extent this variation differs among the phylogroups. Findings We found that members of phylogroup B possess larger genomes, contribute a comparatively larger number of pangenome families, and show lower abundance of CRISPR-Cas systems. Furthermore, AMR and defence systems are pervasive in RGPs and integrative and conjugative/mobilizable elements (ICEs/IMEs) from phylogroups A and B, and the abundance of these cargo genes is often significantly correlated. Moreover, inter- and intra-phylogroup interactions occur at the accessory genome level, suggesting frequent recombination events. Finally, we provide here a panel of diverse P. aeruginosa strains to be used as reference for functional analyses. Interpretation Altogether, our results highlight distinct pangenome characteristics of the P. aeruginosa phylogroups, which are possibly influenced by variation in the abundance of CRISPR-Cas systems and that are shaped by the differential distribution of other defence systems and AMR genes. Funding German Science Foundation, Max-Planck Society, Leibniz ScienceCampus Evolutionary Medicine of the Lung, BMBF program Medical Infection Genomics, Kiel Life Science Postdoc Award. Research in context Evidence before this study To date, pangenome studies exploring the epidemiology and evolution dynamics of bacterial pathogens have been limited due to the use of gene frequencies across whole species dataset without accounting for biased sampling or the population structure of the genomes in the dataset. We searched PubMed without language restrictions for articles published before September 1, 2021, that investigated the phylogroup-specific evolutionary dynamics across bacterial species. In this literature search we used the search terms “pangenome” and “phylogroup” or “uneven”, which returned 14 results. Of these, only one study used a population structure-aware approach to explore pangenome dynamics in a bacterial species consisting of multiple phylogroups with unevenly distributed members. Added value of this study To our knowledge, this study is the first to assess phylogroup-specific evolutionary dynamics in a collection of genomes belonging to the nosocomial pathogen P. aeruginosa. Using a refined approach that challenges traditional pangenome analyses, we found specific signatures for each of the three phylogroups, and we demonstrate that members of phylogroup B contribute a comparatively larger number of pangenome families, have larger genomes, and have a lower prevalence of CRISPR-Cas systems. Additionally, we observed that antibiotic resistance and defence systems are pervasive in regions of genome plasticity and integrative and conjugative/mobilizable elements from phylogroups A and B, and that antibiotic resistance and defence systems are often significantly correlated in these mobile genetic elements. Implications of all the available evidence These results indicate that biases inherent to traditional pangenome approaches can obscure the real distribution of important cargo genes in a bacterial species with a complex population structure. Furthermore, our findings pave the way to new pangenome approaches that are currently under-explored in comparative genomics and, crucially, shed a new light on the role that integrative and conjugative/mobilizable elements may play in protecting the host against foreign DNA.
Additional file 1: Table S1. Origin of Rv0678 mutant isolates included in homoplastic analysis. Table S2. Drug resistance mutations and cluster analysis of collection 2 strains and EMBL-EBI ENA sequence read archive numbers. Table S3. BDQ and CFZ Minimum inhibitory concentration of 25 Rv0678 mutant and 12 wild type strains. Table S4. WGS of 273 isolates submitted to the EMBL-EBI ENA sequence read archive. Table S5. Epidemiological and genotyping data of 412 Mtbc-strains. Table S6. Phenotypic DST data of 412 Mtbc-strains, resistance mediating mutations for 273 whole genome sequenced isolates. Table S7. Drug resistance mediating mutations of all MDR clusters.
Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a transmissible disease notifiable to the World Organization for Animal Health and to the European Union, with ongoing efforts of surveillance and eradication in every EU member state. In Germany, a country which has been declared officially free from bovine tuberculosis since 1997 by the EU, M. bovis infections still occur sporadically in cattle and other mammals, including humans. Here, the transmission routes of a bTB outbreak in a wildlife park in Germany affecting different cervid species, bison, lynx, and pot-bellied pigs were followed by employing whole-genome sequencing (WGS) combined with spoligotyping and mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing. One single M. bovis strain persisted from 2002 to 2015, and transmission between the park and a distantly located captive cervid farm was verified. The spoligotyping patterns remained identical, while MIRU-VNTR typing of 24 loci of the standardized panel and locus 2163a as an additional locus revealed one change at locus 2165 in a strain from a fallow deer and one at locus 2461 in isolates from red deer over the whole time period. WGS analysis confirmed the close relatedness of the isolates, with a maximum of 12 single nucleotide polymorphisms (SNPs) detected between any two sequenced isolates. In conclusion, our data confirm a longitudinal outbreak of M. bovis in a German wildlife park and provide the first insights into the dynamics of different genotyping markers in M. bovis.
The objective of this study was to develop standardized protocols for rapid delamanid drug susceptibility testing (DST) using the colorimetric resazurin microtitre assay (REMA) and semi-automated BACTEC™ MGIT™ 960 system (MGIT) by establishing breakpoints that accurately discriminate between susceptibility and resistance of Mycobacterium tuberculosis to delamanid. MICs of delamanid were determined by the MGIT, the REMA and the solid agar method for 19 pre-characterized strains. The MIC distribution of delamanid was then established for a panel of clinical strains never exposed to the drug and characterized by different geographical origins and susceptibility patterns. WGS was used to investigate genetic polymorphisms in five genes (ddn, fgd1, fbiA, fbiB and fbiC) involved in intracellular delamanid activation. We demonstrated that the REMA and MGIT can both be used for the rapid and accurate determination of delamanid MIC, showing excellent concordance with the solid agar reference method, as well as high reproducibility and repeatability. We propose the tentative breakpoint of 0.125 mg/L for the REMA and MGIT, allowing reliable discrimination between M. tuberculosis susceptible and resistant to delamanid. Stop codon mutations in ddn (Trp-88 → STOP) and fbiA (Lys-250 → STOP) have only been observed in strains resistant to delamanid. We established protocols for DST of delamanid in the MGIT and REMA, confirming their feasibility in routine TB diagnostics, utilizing the same discriminative concentration for both methods. Moreover, taking advantage of WGS analysis, we identified polymorphisms potentially associated with resistance in two genes involved in delamanid activation.