We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low- and intermediate ions (O i, C ii, Si ii, Mg ii, Fe ii, Si iii, C iv, and Si iv) in the range f c = 0.20−0.70. For detailed analysis we concentrate on Si ii absorption components in HVCs, for which we investigate the distribution of column densities, b -values, and radial velocities. Combining information for Si ii and Mg ii, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong Mg ii absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average ~52 percent to the total strong Mg ii cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong Mg ii absorption in the Milky Way halo and disc from an exterior vantage point is ⟨f c,sMgII ⟩ = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong Mg ii absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong Mg ii absorbers is c = 0.20−0.70. For detailed analysis we concentrate on Si ii absorption components in HVCs, for which we investigate the distribution of column densities, b -values, and radial velocities. Combining information for Si ii and Mg ii, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong Mg ii absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average ~52 percent to the total strong Mg ii cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong Mg ii absorption in the Milky Way halo and disc from an exterior vantage point is ⟨f c,sMgII ⟩ = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong Mg ii absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong Mg ii absorbers is < 34 percent. These findings are in line with the idea that outflowing gas (e.g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong Mg ii absorbers in the local Universe.
We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low- and intermediate ions (OI, CII, SiIII, MgII, FeII, SiIII, CIV, and SiIV) in the range fc = 0.20 - 0.70. For detailed analysis we concentrate on SiII absorption components in HVCs, for which we investigate the distribution of column densities, b-values, and radial velocities. Combining information for SiII and MgII, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong MgII absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average ~52 % to the total strong MgII cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong MgII absorption in the Milky Way halo and disc from an exterior vantage point is fc(sMgII) = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong MgII absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong MgII absorbers is <34 %. These findings are in line with the idea that outflowing gas (e.g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong MgII absorbers in the local Universe.
Doubly ionized silicon (SiIII) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening SiIII-selected absorbers and their relation to the circumgalactic medium (CGM) of galaxies at low redshift (z<=0.1), based on the analysis of UV absorption spectra along 303 extragalactic lines of sight obtained with the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST). Along a total redshift path of Dz=24 we identify 69 intervening SiIII systems that all show associated absorption from other low and high ions. We derive a bias-corrected number density of dN/dz(SiIII)=2.5 for absorbers with column densities log N(SiIII)>12.2. We develop a geometrical model for the absorption-cross section of the CGM around the local galaxy population and find excellent agreement between the model predictions and the observations. We further compare redshifts and positions of the absorbers with that of ~64,000 galaxies using archival galaxy-survey data. For the majority of the absorbers we identify possible host galaxies within 300 km/s of the absorbers and derive impact parameters rho<200 kpc, demonstrating that the spatial distributions of SiIII absorbers and galaxies are highly correlated. Our study indicates that the majority of SiIII-selected absorbers in our sample trace the CGM of nearby galaxies within their virial radii at a typical covering fraction of ~70 per cent. From a detailed ionization model we estimate that diffuse gas in the CGM around galaxies, as traced by SiIII, contains substantially more baryonic mass than their neutral interstellar medium.
We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low- and intermediate ions (OI, CII, SiIII, MgII, FeII, SiIII, CIV, and SiIV) in the range fc = 0.20 - 0.70. For detailed analysis we concentrate on SiII absorption components in HVCs, for which we investigate the distribution of column densities, b-values, and radial velocities. Combining information for SiII and MgII, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong MgII absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average ~52 % to the total strong MgII cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong MgII absorption in the Milky Way halo and disc from an exterior vantage point is fc(sMgII) = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong MgII absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong MgII absorbers is <34 %. These findings are in line with the idea that outflowing gas (e.g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong MgII absorbers in the local Universe.