Abstract There is no specific drug for coronavirus disease 2019 (COVID-19). We aimed to investigate the possible clinical efficacy of moderate-dose vitamin C infusion among inpatients with severe COVID-19. Data of 397 adult patients with severe COVID-19 admitted to a designated clinical center of Wuhan Union Hospital (China) between February 13 and February 29, 2020, were collected. Besides standard therapies, patients were treated with vitamin C (2–4 g/day) or not. The primary outcome was all-cause death. Secondary outcome was clinical improvement of 2 points on a 6-point ordinal scale. About 70 participants were treated with intravenous vitamin C, and 327 did not receive it. No significant association was found between vitamin C use and death on inverse probability treatment weighting (IPTW) analysis (weighted hazard ratio [HR], 2.69; 95% confidence interval [CI], 0.91–7.89). Clinical improvement occurred in 74.3% (52/70) of patients in the vitamin C group and 95.1% (311/327) in the no vitamin C group. No significant difference was observed between the two groups on IPTW analysis (weighted HR, 0.76; 95% CI, 0.55–1.07). Our findings revealed that in patients with severe COVID-19, treatment with moderate dose of intravenous vitamin C had no significant benefit on reducing the risk of death and obtaining clinical improvement.
Abstract Background: Patients with severe Coronavirus Disease 2019 (COVID-19) will progress rapidly to acute respiratory failure or death. We aimed to develop a quantitative tool for early predicting mortality risk of patients with COVID-19. Methods: 301 patients with confirmed COVID-19 admitted to Main District and Tumor Center of the Union Hospital of Huazhong University of Science and Technology (Wuhan, China) between January 1, 2020 to February 15, 2020 were enrolled in this retrospective two-centers study. Data on patient demographic characteristics, laboratory findings and clinical outcomes was analyzed. A nomogram was constructed to predict the death probability of COVID-19 patients. Results: Age, neutrophil-to-lymphocyte ratio, D-dimer and C-reactive protein obtained on admission were identified by LASSO regression as predictors of mortality for COVID-19 patients. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.921 and 0.975 for the derivation and validation cohort, respectively. An integrated score (named ANDC) with its corresponding death probability was derived. Using ANDC cut-off values of 59 and 101, COVID-19 patients were classified into three subgroups. The death probability of low risk group (ANDC < 59) was less than 5%, moderate risk group (59 ≤ ANDC ≤ 101) was 5% to 50%, and high risk group (ANDC > 101) was more than 50%, respectively. Conclusion: The prognostic nomogram exhibited good discrimination power in early identification of COVID-19 patients with high mortality risk, and ANDC score may help physicians to optimize patient stratification management.
Abstract Background Patients with severe Coronavirus Disease 2019 (COVID-19) will progress rapidly to acute respiratory failure or death. We aimed to develop a quantitative tool for early predicting mortality risk of patients with COVID-19. Methods 301 patients with confirmed COVID-19 admitted to Main District and Tumor Center of the Union Hospital of Huazhong University of Science and Technology (Wuhan, China) between January 1, 2020 to February 15, 2020 were enrolled in this retrospective two-centers study. Data on patient demographic characteristics, laboratory findings and clinical outcomes was analyzed. A nomogram was constructed to predict the death probability of COVID-19 patients. Results Age, neutrophil-to-lymphocyte ratio, d -dimer and C-reactive protein obtained on admission were identified as predictors of mortality for COVID-19 patients by LASSO. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.921 and 0.975 for the derivation and validation cohort, respectively. An integrated score (named ANDC) with its corresponding death probability was derived. Using ANDC cut-off values of 59 and 101, COVID-19 patients were classified into three subgroups. The death probability of low risk group (ANDC < 59) was less than 5%, moderate risk group (59 ≤ ANDC ≤ 101) was 5% to 50%, and high risk group (ANDC > 101) was more than 50%, respectively. Conclusion The prognostic nomogram exhibited good discrimination power in early identification of COVID-19 patients with high mortality risk, and ANDC score may help physicians to optimize patient stratification management.
Macrophages play a key role in the pathogenesis of liver granuloma and fibrosis in schistosomiasis. However, the underlying mechanisms have not been fully characterized. This study revealed that the macrophages infiltrating the liver tissues in a murine model of Schistosoma japonica infection exhibited M2 functional polarization, and Notch1/Jagged1 signaling was significantly upregulated in the M2 polarized macrophages in vivo and in vitro. Furthermore, the blockade of Notch signaling pathway by a γ–secretase inhibitor could reverse macrophage M2 polarization in vitro and alleviate liver granuloma and fibrosis in the murine model of schistosomiasis. These results implied that the Notch1/Jagged1 signaling-dependent M2 polarization of macrophages might play an important role in liver granuloma and fibrosis in schistosomiasis, and the inhibition of Notch1/Jagged1 signaling might provide a novel therapeutic approach to administrate patients with schistosomiasis.
The transformation of hepatic stellate cell (HSC) to myofibroblast is a key event during liver fibrogenesis. However, the differentiation trajectory of HSC-to-myofibroblast transition and the switching genes during this process remains not well understood.We applied single-cell sequencing data to reconstruct a single-lineage pseudotime trajectory of HSC transdifferentiation in vitro and analyzed the gene expression patterns along the trajectory. GeneSwitches was used to identify the order of critical gene expression and functional events during HSC activation.A novel cell state during HSC activation was revealed and the HSCs belonging to this state may be an important origin of cancer-associated fibroblasts (CAFs). Combining single-cell transcriptomics with GeneSwitches analyses, we identified some distinct switching genes and the order at which these switches take place for the new state of HSC and the classic culture-activated HSC, respectively. Based on the top switching genes, we established a four-gene combination which exhibited highly diagnostic accuracy in predicting advanced liver fibrosis in patients with nonalcoholic fatty liver disease (NAFLD) or hepatitis B (HBV).Our study revealed a novel cell state during HSC activation which may be relevant to CAFs, and identified switching genes that may play key roles in HSC transdifferentiation and serve as predictive markers of advanced fibrosis in patients with chronic liver diseases.
To investigate whether Notch signaling is activated in hepatic stellate cells (HSCs), and to determine whether manipulation of the Notch signaling pathway can effect the activation of HSCs.The expression of Notch signaling components in unactivated or TGF-b1-activated HSC-T6 cells was detected by Taqman Probe-based gene expression analysis. Differential expression of Notch3 and Jagged1 was detected by immunofluorescence analysis. Notch3-mediated expression of the myofibroblastic markers, a-SMA and collagen I, was detected in HSC-T6 cells transfected with pcDNA3.1-N3ICD or Notch3 siRNA by Western blotting.Notch signaling components were expressed in both unactivated and activated HSC-T6 cells, but the TGF-b1-treated cells showed significantly higher expression levels of Jagged1 (3.9-fold, F = 2543.482), Notch3 (4.2-fold, F = 287.982), and HES1 (3.2-fold, F = 1719.851). Transfection-mediated over-expression of Notch3 led to significantly increased expression of a-SMA (6.8-fold, t = 13.157) and collagen I (5.5-fold, t = 9.810) (both P less than 0.01). Transient knock-down of Notch3 expression by siRNA decreased expression of the myofibroblastic markers (a-SMA by approximately 90%, t = 19.863 and collagen I by 84%, t = 10.376; both, P less than 0.01). Moreover, knock-down of Notch3 antagonized the TGF-b1-induced expression of a-SMA and collagen I.Notch signaling may participate in liver fibrogenesis by regulating HSC activation. Selective interruption of Notch3 may represent a new anti-fibrotic strategy to treat liver fibrosis.
The dynamic changes of lymphocyte subsets and cytokines profiles of patients with novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear.
CONCLUSION:Both PAP-S and PAP encoded by a eukaryotic expression plasmid could effectively inhibit HBV replication and antigen expression in vitro , and the inhibitory effects were dose-dependent.
Abstract Background The dynamic changes of lymphocyte subsets and cytokines profiles of patients with novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. Methods Peripheral blood samples were longitudinally collected from 40 confirmed COVID-19 patients and examined for lymphocyte subsets by flow cytometry and cytokine profiles by specific immunoassays. Results Of the 40 COVID-19 patients enrolled, 13 severe cases showed significant and sustained decreases in lymphocyte counts but increases in neutrophil counts than 27 mild cases. Further analysis demonstrated significant decreases in the counts of T cells, especially CD8 + T cells, as well as increases in IL-6, IL-10, IL-2 and IFN-γ levels in the peripheral blood in the severe cases compared to those in the mild cases. T cell counts and cytokine levels in severe COVID-19 patients who survived the disease gradually recovered at later time points to levels that were comparable to those of the mild cases. Moreover, the neutrophil-to-CD8+ T cell ratio (N8R) were identified as the most powerful prognostic factor affecting the prognosis for severe COVID-19. Conclusions The degree of lymphopenia and a proinflammatory cytokine storm is higher in severe COVID-19 patients than in mild cases, and is associated with the disease severity. N8R may serve as a useful prognostic factor for early identification of severe COVID-19 cases. Summary Lymphocyte subsets and cytokine profiles in the peripheral blood of COVID-19 patients were longitudinally characterized. The study revealed the kinetics features of immune parameters associated with the disease severity and identified N8R as a useful prognostic factor for predicting severe COVID-19 cases.