Abstract. We have performed a three-year series of routine lidar measurements on a climatological base. To obtain an unbiased data set, the measurements were taken at preselected times. The measurements were performed between 1 December 1997, and 30 November 2000, at Kühlungsborn, Germany (54°07' N, 11°46' E). Using a Rayleigh/Mie/Raman lidar system, we measured the aerosol backscatter coefficients at three wavelengths in and above the planetary boundary layer. The aerosol extinction coefficient has been determined at 532 nm, but here the majority of the measurements has been restricted to heights above the boundary layer. Only after-sunset measurements are included in this data set since the Raman measurements were restricted to darkness. For the climatological analysis, we selected the cloud-free days out of a fixed measurement schedule. The annual cycle of the boundary layer height has been found to have a phase shift of about 25 days with respect to the summer/winter solstices. The mean values of the extinction and backscatter coefficients do not show significant annual differences. The backscatter coefficients in the planetary boundary layer were found to be about 10 times higher than above. The mean aerosol optical depth above the boundary layer and below 5 km is 0.26 (±1.0) x 10-2 in summer, and 1.5 (±0.95) x 10-2 in winter, which almost negligible compared to values measured in the boundary layer. A cluster analysis of the backward trajectories yielded two major directions of air mass origin above the planetary boundary layer and 4 major directions inside. A marked difference between the total aerosol load dependent on the air mass origin could be found for air masses originating from the west and travelling at high wind speeds. Comparing the measured spectral dependence of the backscatter coefficients with data from the Global Aerosol Data Set, we found a general agreement, but only a few conclusions with respect to the aerosol type could be draws due to the high variability of the measured backscatter coefficients.
This article reports on the growth of polysilicon sheets up to 6 m in length by the RAD process using carbon substrates coated by rough laminar pyrocarbon in a continuous deposition process. It is shown that smooth layers exhibiting a minority-carrier diffusion length of around 60 μ,m can be achieved at pulling rates up to 10 cm/mn. New substrate bases are described and RAD solar cells (A.R. coated) made from the first continuous ribbons grown so far can exhibit AM1 conversion efficiencies above 9 %.
The control over structure and function in hierarchically multidimensional materials based on hollow spheres, nanowires, nanorods, nanotubes, fibres, membranes or inverse opals with adjustable dimensions has gained considerable attention due to their tremendous potential for a wide variety of applications. Herein we describe convenient and efficient synthetic concepts for synthesis and processing of well-defined polymer-templated inorganic materials with 0D, 1D, 2D and 3D nano- and microstructures. In the first step, we describe universal methodologies for the controlled build-up of polymer-templated non-functional inorganic structures by taking advantage of lower dimensional structures such as core–shell particles or fibres. With this approach it is possible to obtain more sophisticated architectures such as 3D ordered macroporous (3DOM) materials after applying different procedures for organization, e.g. the powerful melt shear technique as well as novel double-templating strategies towards multidimensional carbon architectures. To prove the feasibility of our protocols established herein we have exemplarily applied these methods to the formation of functional inorganic high-temperature materials, such as silicon carbide (β-SiC) and yttria-stabilized zirconia (YSZ). The general pathways for the controlled build-up of nano- and micro-scaled structures based on polymer templates may thus provide a facile and versatile route to an even wider variety of organic/inorganic composite materials offering a wider range of future applications in the fields of catalysis, separation, sensors, optics, and biomedicine. Herein we show first examples of selected new material morphologies towards energy related issues, namely Li-ion battery applications and heterogeneous catalysis (selective ethanol oxidation).
Keywords: structural glass ; COST ; COST Action TU0905 ; cooperation in science and technology ; European research Reference EPFL-CONF-200279 Record created on 2014-07-17, modified on 2016-08-09