α-MnO2 nanorods (NRs) were synthesized by microwave irradiation and used as supports for platinum nanoparticles by wet impregnation with Pt(acac)2 as precursor. XRD analysis revealed that the samples without platinum (sample MP0) and with 1 % platinum (sample MP1) contained tetragonal α-MnO2. Samples with 3 % (sample MP3) and 5 % (sample MP5) of platinum contained monoclinic Mn5O8 in addition to α-MnO2, with Mn5O8 dominating in sample MP5. Rietveld analysis showed that the lattice parameters of α-MnO2 increased slightly with Pt loading. SEM and STEM showed that higher Pt loadings resulted in shorter α-MnO2 NRs and different sizes and dispersions of PtNPs on their surface. XPS results showed a decrease in Pt(IV) and Pt(II) concentration with Pt loading, while Pt(0) increased. NEXAFS results showed the presence of Mn(II) in MP3 and MP5, which is consistent with XRD results detecting Mn5O8. The catalytic activity of the Pt/α-MnO2 nanorods was tested in the catalytic reduction of 4-nitrophenol to 4-aminophenol. MP1, with the lowest platinum content, exhibited the highest mass normalized rate constant kapp/mPt of 1.8 × 104 s−1 g−1. The study suggests that the presence of Pt(IV) is not a limiting factor for the catalytic reduction of 4-NP to 4-AP.
The ambient-pressure endstation and branchline of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source serves a very diverse user community studying heterogeneous catalysts, pharmaceuticals and biomaterials under realistic conditions, liquids and ices, and novel electronic, photonic and battery materials. The instrument facilitates studies of the near-surface chemical composition, electronic and geometric structure of a variety of samples using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy in the photon energy range from 170 eV to 2800 eV. The beamline provides a resolving power hν/Δ(hν) > 5000 at a photon flux > 1010 photons s-1 over most of its energy range. By operating the optical elements in a low-pressure oxygen atmosphere, carbon contamination can be almost completely eliminated, which makes the beamline particularly suitable for carbon K-edge NEXAFS. The endstation can be operated at pressures up to 100 mbar, whereby XPS can be routinely performed up to 30 mbar. A selection of typical data demonstrates the capability of the instrument to analyse details of the surface composition of solid samples under ambient-pressure conditions using XPS and NEXAFS. In addition, it offers a convenient way of analysing the gas phase through X-ray absorption spectroscopy. Short XPS spectra can be measured at a time scale of tens of seconds. The shortest data acquisition times for NEXAFS are around 0.5 s per data point.
Hydrotalcite-derived Ni and Fe-promoted hydrotalcite-derived Ni catalysts were found to outperform industrial catalysts in the CO2 methanation reaction, however the origin of the improved activity and selectivity of these catalysts is not clear. Here, we report a study of these systems by means of in situ X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy elucidating the chemical nature of the catalysts surface under reaction conditions and revealing the mechanism by which Fe promotes activity and selectivity towards methane. We show that the increase of the conversion leads to hydroxylation of the Ni surface following the formation of water during the reaction. This excessive Ni surface hydroxylation has however a detrimental effect as shown by a controlled study. A dominant metallic Ni surface exists in conditions of higher selectivity towards methane whereas if an increase of the Ni surface hydroxylation occurs, a higher selectivity towards carbon monoxide is observed. The electronic structure analysis of the Fe species under reaction conditions reveals the existence of predominantly Fe(iii) species at the surface, whereas a mixture of Fe(ii)/Fe(iii) species is present underneath the surface when selectivity to methane is high. Our results highlight that Fe(ii) exerts a beneficial effect on maintaining Ni in a metallic state, whereas the extension of the Fe oxidation is accompanied by a more extended Ni surface hydroxylation with a negative impact on the selectivity towards methane.
Abstract Electrochemical hydrogen peroxide (H 2 O 2 ) production (EHPP) via a two-electron oxygen reduction reaction (2e - ORR) provides a promising alternative to replace the energy-intensive anthraquinone process. M-N-C electrocatalysts, which consist of atomically dispersed transition metals and nitrogen-doped carbon, have demonstrated considerable EHPP efficiency. However, their full potential, particularly regarding the correlation between structural configurations and performances in neutral media, remains underexplored. Herein, a series of ultralow metal-loading M-N-C electrocatalysts are synthesized and investigated for the EHPP process in the neutral electrolyte. CoNCB material with the asymmetric Co-C/N/O configuration exhibits the highest EHPP activity and selectivity among various as-prepared M-N-C electrocatalyst, with an outstanding mass activity (6.1 × 10 5 A g Co −1 at 0.5 V vs. RHE), and a high practical H 2 O 2 production rate (4.72 mol g catalyst −1 h −1 cm −2 ). Compared with the popularly recognized square-planar symmetric Co-N 4 configuration, the superiority of asymmetric Co-C/N/O configurations is elucidated by X-ray absorption fine structure spectroscopy analysis and computational studies.
Valence electronic structure is crucial for understanding and predicting reactivity. Valence non-resonant X-ray photoelectron spectroscopy (NRXPS) provides a direct method for probing the overall valence electronic structure. However, it is often difficult to separate the varying contributions to NRXPS; for example, contributions of solutes in solvents or functional groups in complex molecules. In this work we show that valence resonant X-ray photoelectron spectroscopy (RXPS) is a vital tool for obtaining atomic contributions to valence states. We combine RXPS with NRXPS and density functional theory calculations to demonstrate the validity of using RXPS to identify atomic contributions for a range of solutes (both neutral and ionic) and solvents (both molecular solvents and ionic liquids). Furthermore, the one-electron picture of RXPS holds for all of the closed shell molecules/ions studied, although the situation for an open-shell metal complex is more complicated. The factors needed to obtain a strong RXPS signal are investigated in order to predict the types of systems RXPS will work best for; a balance of element electronegativity and bonding type is found to be important. Additionally, the dependence of RXPS spectra on both varying solvation environment and varying local-covalent bonding is probed. We find that RXPS is a promising fingerprint method for identifying species in solution, due to the spectral shape having a strong dependence on local-covalency but a weak dependence on the solvation environment.
The ammonia oxidation reaction over a PtRh binary alloy has been studied with a surface science approach by operando techniques such as near-ambient pressure X-ray photoemission spectroscopy (NAP-XPS) and surface X-ray diffraction (SXRD) combined with mass spectrometry. The article will explore the surface evolution across five different oxygen to ammonia ratios in the millibar regime for two different temperatures. The presented data set allows us to link variations in the atomic structures measured by diffraction methods and surface species information from NAP-XPS to reaction products in the gas phase. We will show that NO production coincides with significant changes of the surface structure and the formation of a RhO2 surface oxide. It was also observed that the RhO2 surface oxide only fully forms when the nitrogen signal in the N1s has disappeared.