Introduction The association between the BTD genotype and biochemical phenotype [profound biotinidase deficiency (BD), partial BD or heterozygous activity] is not always consistent. This study aimed to investigate the genotype-biochemical phenotype association in patients with low biotinidase activity. Methods All exons, the 5'UTR and the promoter of the BTD gene were sequenced in 72 Brazilian individuals who exhibited low biotinidase activity. For each patient, the expected biochemical phenotype based on the known genotype was compared with the observed biochemical phenotype. Additional non-genetic factors that could affect the biotinidase activity were also analysed. Results Most individuals were identified by neonatal screening (n = 66/72). When consecutive results for the same patient were compared, age, prematurity and neonatal jaundice appeared to affect the level of biotinidase activity. The biochemical phenotype at the time of the second blood collection changed in 11/22 patients compared to results from the first sample. Three novel variants were found: c.1337T>C (p.L446P), c.1466A>G (p.N489S) and c.962G>A (p.W321*). Some patients with the same genotype presented different biochemical phenotypes. The expected and observed biochemical phenotypes agreed in 68.5% of cases (concordant patients). The non-coding variants c.-183G>A, c.-315A>G and c.-514C>T were present in heterozygosis in 5/17 discordant patients. In addition, c.-183G>A and c.-514C>T were also present in 10/37 concordant patients. Conclusions The variants found in the promoter region do not appear to have a strong impact on biotinidase activity. Since there is a disparity between the BTD genotype and biochemical phenotype, and biotinidase activity may be affected by both genetic and non-genetic factors, we suggest that the diagnosis of BD should be based on more than one measurement of plasma biotinidase activity. DNA analysis can be of additional relevance to differentiate between partial BD and heterozygosity.
It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes. To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes. This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals. Genetic test results. Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms. Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%). Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes.
Abstract The Brazilian Policy of Comprehensive Care for People with Rare Diseases (BPCCPRD) was established by the Ministry of Health to reduce morbidity and mortality and improve the quality of life of people with rare diseases (RD). Several laboratory tests, most using molecular genetic technologies, have been incorporated by the Brazilian Public Health System, and 18 specialised centres have so far been established at university hospitals (UH) in the capitals of the Southern, Southeastern and Northeastern regions. However, whether the available human and technological resources in these services are appropriate and sufficient to achieve the goals of care established by the BPCCPRD is unknown. Despite great advances in diagnosis, especially due to new technologies and the recent structuring of clinical assessment of RD in Brazil, epidemiological data are lacking and when available, restricted to specific disorders. This position paper summarises the performance of a nationally representative survey on epidemiology, clinical status, and diagnostic and therapeutic resources employed for individuals with genetic and non-genetic RD in Brazil. The Brazilian Rare Disease Network (BRDN) is under development, comprising 40 institutions, including 18 UH, 17 Rare Diseases Reference Services and five Newborn Screening Reference Services. A retrospective study will be initially conducted, followed by a prospective study. The data collection instrument will use a standard protocol with sociodemographic data and clinical and diagnostic aspects according to international ontology. This great collaborative network is the first initiative of a large epidemiological data collection of RD in Latin America, and the results will increase the knowledge of RD in Brazil and help health managers to improve national public policy on RD in Brazil.
The current study delves into the accessibility of genetic evaluations for individuals with orofacial clefts (OC), comparing data between genetics and treatment centers across Brazil.