Repaglinide is considered the drug of choice for diabetic patients with impaired kidney function as it is excreted mainly in the bile. Unfortunately, it possesses low oral bioavailability of approximately 56 %. Therefore, nano-sized globules containing the drug are expected to enhance its bioavailability and sustain its glucose lowering action. Self nano-emulsifying drug delivery systems (SNEDDS) of repaglinide have been prepared for improving the water solubility and oral bioavailability of the drug. Various compositions of SNEDDS were prepared using four types of oils (oleic acid, isopropyl myristate IPM. Labrafil 1944 and 2125), surfactants (chromophore El35, chromophore RH 40, Labrasol and Span 20) and a variety of co-surfacatnts. Low energy emulsification was adopted as the method of preparation for its feasibility and low cost. The prepared nano-emulsions showed small average droplet size (13.5-20 nm) and low polydispersity index (0.10 - 0.30). In-vitro dissolution studies indicated that the drug release from some of the prepared nanoemulsion droplets reached 75 % within the first 30 minutes. The i n-vivo data demonstrated that repaglinide in the nano-emulsion formulations F8 (IPM, Cremophor EL35 and Propylene glycol) and F16 (Oleic acid, Cremophor RH40 and Lauroglycol FCC) lowered the plasma glucose level (< 110 mg/dL) of experimental rabbits in a similar trend to that of the commercial product (Novonorm ® ), moreover, it caused an excess reduction in blood glucose level at the end of the 24 hrs period by virtue of its long circulation time compared to the marketed formula.
Objective: The objective of this study was to design an effective topical treatment for oral mucositis.Methods: Poly-(DL-lactide-co-glycolide) (PLGA) nanoparticles (NPs) and Poloxamer407 (PLX)/Hydroxy propyl methyl cellulose (HPMC) hydrogel matrix (HG) were used as combined carriers for benzydamine HCL (BNZ). BNZ loaded PLGA nanoparticles were assessed for their particle size, PDI, zeta potential and entrapment efficiency. Scanning electron microscopy, thermosensitivity study, mucoadhesion study, in vitro release and in vivo investigation were used to characterize the combined BZN loaded PLGA NPs HG.Results: Negatively charged NPs with an average diameter of 139±4.92 nm were incorporated into PLX/HPMC HG bases. The gelation temperature of BZN-PLGA-NPs-HGs ranged between 31°C and 36.5°C. When diluted with saliva simulated fluid, BZN-PLGA-NPs-HGs preserved their gelation properties. Mucoadhesion was found lower for formulations prepared with PLX without HPMC. An increase in the concentrations of PLX from 10 to 30% resulted in an increase in adhesion. Both PLGA-NPs and PLGA-NPs-HG provided a biphasic drug release profile while BZN-HG provided monophasic zero order release pattern. The in vivo study showed that animal groups treated with BZN-HG and BZN-PLGA-NPs-HG showed a significantly higher reduction percentage in ulcer surface area compared to those treated with BZN-PLGA-NPs. BZN-PLGA-NPs-HG group needed 10 d of treatment to complete healing versus 16 d, 14 d and 12 d for the complete healing of groups with no treatment, treated with BZN-PLGA-NPs and treated with BZN-HG, respectively.Conclusion: BZN-PLGA-NPs-HG could represent a promising mean for the effective treatment of oral mucositis induced by cancer therapy.
3 Abstract: The ethanol extracts of thirty two Punica granatum L. from different region of Egypt, were used for the investigation of antibacterial studies. In antibacterial screening performed by agar well diffusion method against four human pathogen (Escherichia coli and Pseudomonas aeruginosa as gram negative (G-ve) bacteria and Staphylococcus aureus and Streptococcus faecalis as gram positive (G+ve) bacteria) and two plant pathogen (Erwinia cartovora and Xanthomonase campestris as gram negative (G-ve) bacteria), it was found that the ethanol extracts of all the plant samples showed activity against all tested bacteria. The ethanol extracts of Punica granatum exhibited clear zone of inhibition against the tested micro organisms. The results revealed that plant extracts especially some obtained from Assuit and North Saini had a strong antibacterial activity against all tested bacteria
Context: Treatment of chronic pain is complicated by the evidence that abuse of prescription opioids is rising; therefore, in many cases, chronic pain remains undertreated. Tramadol is an atypical central analgesic with a mixed mechanism of action offering many advantages over conventional opioids. Objective: We exploited the nonopioid action of tramadol, by bypassing the first-pass effect, as well as multiparticulate drug delivery. Our aim was to identify optimal formulation parameters for designing polyvinyl alcohol (PVA), single and mixed dual cross-linked tramadol microspheres-loaded hydrogel with adequate bioadhesion and providing controlled drug release for buccal delivery. Methods: Microspheres characterization was done by scanning electron microscopy and infrared spectroscopy. Other investigations comprised the evaluation of yield, drug content, particle size, rheology, swelling, mucoadhesion, release, and permeation studies through biological membranes all together with testing the antinociceptive activity and its attenuation by the antagonist naloxone HCl. Results and conclusion: PVA-alginate microspheres (F3)-loaded carbopol hydrogel attained: the highest mucoadhesion time (1436.67 min ± 5.77) and mucin adsorption capacity, shear thinning thixotropic properties with adequate yield value and hysteresis area, best drug release (RE = 84.20 ± 2.07%) and permeation efficiency (PE = 65.30 ± 7.02%). Dissolution and permeation profiles were compared using similarity factor; F3-loaded carbogel had the lowest value. During in vivo study, the nonsignificant difference between the AUC of the groups receiving F3-loaded carbogel buccally with (group 5) and without (group 4) administration of naloxone, and between group 4 and the oral group, showed that the buccal route may arguably provide an alternative safer route of tramadol administration.