Reconfigurable intelligent surface (RIS) is regarded as an important enabling technology for the sixth-generation (6G) network. Recently, modulating information in reflection patterns of RIS, referred to as reflection modulation (RM), has been proven in theory to have the potential of achieving higher transmission rate than existing passive beamforming (PBF) schemes of RIS. To fully unlock this potential of RM, we propose a novel superimposed RIS-phase modulation (SRPM) scheme for multiple-input multiple-output (MIMO) systems, where tunable phase offsets are superimposed onto predetermined RIS phases to bear extra information messages. The proposed SRPM establishes a universal framework for RM, which retrieves various existing RM-based schemes as special cases.Moreover, the advantages and applicability of the SRPM in practice is also validated in theory by analytical characterization of its performance in terms of average bit error rate (ABER) and ergodic capacity. To maximize the performance gain, we formulate a general precoding optimization at the base station (BS) for a single-stream case with uncorrelated channels and obtain the optimal SRPM design via the semidefinite relaxation (SDR) technique. Furthermore, to avoid extremely high complexity in maximum likelihood (ML) detection for the SRPM, we propose a sphere decoding (SD)-based layered detection method with near-ML performance and much lower complexity. Numerical results demonstrate the effectiveness of SRPM, precoding optimization, and detection design. It is verified that the proposed SRPM achieves a higher diversity order than that of existing RM-based schemes and outperforms PBF significantly especially when the transmitter is equipped with limited radio-frequency (RF) chains.
Over-the-air computation (AirComp) integrates analog communication with task-oriented computation, serving as a key enabling technique for communication-efficient federated learning (FL) over wireless networks. However, owing to its analog characteristics, AirComp-enabled FL (AirFL) is vulnerable to both unintentional and intentional interference. In this paper, we aim to attain robustness in AirComp aggregation against interference via reconfigurable intelligent surface (RIS) technology to artificially reconstruct wireless environments. Concretely, we establish performance objectives tailored for interference suppression in wireless FL systems, aiming to achieve unbiased gradient estimation and reduce its mean square error (MSE). Oriented at these objectives, we introduce the concept of phase-manipulated favorable propagation and channel hardening for AirFL, which relies on the adjustment of RIS phase shifts to realize statistical interference elimination and reduce the error variance of gradient estimation. Building upon this concept, we propose two robust aggregation schemes of power control and RIS phase shifts design, both ensuring unbiased gradient estimation in the presence of interference. Theoretical analysis of the MSE and FL convergence affirms the anti-interference capability of the proposed schemes. It is observed that computation and interference errors diminish by an order of $\mathcal{O}\left(\frac{1}{N}\right)$ where $N$ is the number of RIS elements, and the ideal convergence rate without interference can be asymptotically achieved by increasing $N$. Numerical results confirm the analytical results and validate the superior performance of the proposed schemes over existing baselines.
In this paper, we consider the robust beamforming design in a reconfigurable intelligent surface (RIS)-aided cell-free (CF) system considering the channel state information (CSI) uncertainties of both the direct channels and cascaded channels at the transmitter with capacity-limited backhaul. We jointly optimize the precoding at the access points (APs) and the phase shifts at multiple RISs to maximize the worst-case sum rate of the CF system subject to the constraints of maximum transmit power of APs, unit-modulus phase shifts, limited backhaul capacity, and bounded CSI errors. By applying a series of transformations, the non-smoothness and semi-infinite constraints are tackled in a low-complexity manner that facilitates the design of an alternating optimization (AO)-based iterative algorithm. The proposed algorithm divides the considered problem into two subproblems. For the RIS phase shifts optimization subproblem, we exploit the penalty convex-concave procedure (P-CCP) to obtain a stationary solution and achieve effective initialization. For precoding optimization subproblem, successive convex approximation (SCA) is adopted with a convergence guarantee to a Karush-Kuhn-Tucker (KKT) solution. Numerical results demonstrate the effectiveness of the proposed robust beamforming design, which achieves superior performance with low complexity. Moreover, the importance of RIS phase shift optimization for robustness and the advantages of distributed RISs in the CF system are further highlighted.
In this paper, we consider the robust beamforming design for a reconfigurable intelligent surface (RIS) aided cell-free (CF) system by taking into account the channel state information (CSI) uncertainties of both the direct channel and cascaded channel at the transmitter. We jointly optimize the precoding at the access points (APs) and the phase shifts at the multiple RISs to maximize the worst-case system sum rate adopting a bounded CSI error model. By applying a series of transformations and approximations, the considered problem is decomposed into several subproblems via the block coordinate descent (BCD) algorithm. To address the nonconvexity arised in the subproblem of RIS phase shift optimization, we exploit the alternating direction method of multipliers (ADMM) to obtain a suboptimal solution. Furthermore, to reduce the computational complexity, we propose a new scheme that applies the ADMM framework to replace the BCD algorithm. Numerical results demonstrate the effectiveness of the proposed robust beamforming design and the importance of accurate cascaded channel estimation.
In this paper, we consider the robust beamforming design in a reconfigurable intelligent surface (RIS)-aided cell-free (CF) system considering the channel state information (CSI) uncertainties of both the direct channels and cascaded channels at the transmitter with capacity-limited backhaul. We jointly optimize the precoding at the access points (APs) and the phase shifts at multiple RISs to maximize the worst-case sum rate of the CF system subject to the constraints of maximum transmit power of APs, unit-modulus phase shifts, limited backhaul capacity, and bounded CSI errors. By applying a series of transformations, the non-smoothness and semi-infinite constraints are tackled in a low-complexity manner that facilitates the design of an alternating optimization (AO)-based iterative algorithm. The proposed algorithm divides the considered problem into two subproblems. For the RIS phase shifts optimization subproblem, we exploit the penalty convex-concave procedure (P-CCP) to obtain a stationary solution and achieve effective initialization. For precoding optimization subproblem, successive convex approximation (SCA) is adopted with a convergence guarantee to a Karush-Kuhn-Tucker (KKT) solution. Numerical results demonstrate the effectiveness of the proposed robust beamforming design, which achieves superior performance with low complexity. Moreover, the importance of RIS phase shift optimization for robustness and the advantages of distributed RISs in the CF system are further highlighted.
To enable wireless federated learning (FL) in communication resource-constrained networks, two communication schemes, i.e., digital and analog ones, are effective solutions. In this paper, we quantitatively compare these two techniques, highlighting their essential differences as well as respectively suitable scenarios. We first examine both digital and analog transmission schemes, together with a unified and fair comparison framework under imbalanced device sampling, strict latency targets, and transmit power constraints. A universal convergence analysis under various imperfections is established for evaluating the performance of FL over wireless networks. These analytical results reveal that the fundamental difference between the digital and analog communications lies in whether communication and computation are jointly designed or not. The digital scheme decouples the communication design from FL computing tasks, making it difficult to support uplink transmission from massive devices with limited bandwidth and hence the performance is mainly communication-limited. In contrast, the analog communication allows over-the-air computation (AirComp) and achieves better spectrum utilization. However, the computation-oriented analog transmission reduces power efficiency, and its performance is sensitive to computation errors from imperfect channel state information (CSI). Furthermore, device sampling for both schemes are optimized and differences in sampling optimization are analyzed. Numerical results verify the theoretical analysis and affirm the superior performance of the sampling optimization.
To mitigate the two limitations existing in the conventional procedures of Nicolson-Ross- Weir (NRW) method, namely thickness resonance and multi-value problems, an alternating iteration algorithm is proposed for accurately retrieving the complex permittivity of non-magnetic materials based on rectangular waveguide measurements. The mechanism for the generating of the two limitations are reviewed and explained with the detailed procedures. Then, two different types of formulas are combined together for alternately iterative calculation, effectively eliminating two limitations simultaneously. The proposed algorithm has been described, and verified with numerous simulations as well as experiments, exhibiting robustness and high accuracy.
Reconfigurable intelligent surface (RIS) is regarded as an important enabling technology for the sixth-generation (6G) network. Recently, modulating information in reflection patterns of RIS, referred to as reflection modulation (RM), has been proven in theory to have the potential of achieving higher transmission rate than existing passive beamforming (PBF) schemes of RIS. To fully unlock this potential of RM, we propose a novel superimposed RIS-phase modulation (SRPM) scheme for multiple-input multiple-output (MIMO) systems, where tunable phase offsets are superimposed onto predetermined RIS phases to bear extra information messages. The proposed SRPM establishes a universal framework for RM, which retrieves various existing RM-based schemes as special cases. Moreover, the advantages and applicability of the SRPM in practice is also validated in theory by analytical characterization of its performance in terms of average bit error rate (ABER) and ergodic capacity. To maximize the performance gain, we formulate a general precoding optimization at the base station (BS) for a single-stream case with uncorrelated channels and obtain the optimal SRPM design via the semidefinite relaxation (SDR) technique. Furthermore, to avoid extremely high complexity in maximum likelihood (ML) detection for the SRPM, we propose a sphere decoding (SD)-based layered detection method with near-ML performance and much lower complexity. Numerical results demonstrate the effectiveness of SRPM, precoding optimization, and detection design. It is verified that the proposed SRPM achieves a higher diversity order than that of existing RM-based schemes and outperforms PBF significantly especially when the transmitter is equipped with limited radio-frequency (RF) chains.
In this paper, we quantitatively compare these two effective communication schemes, i.e., digital and analog ones, for wireless federated learning (FL) over resource-constrained networks, highlighting their essential differences as well as their respective application scenarios. We first examine both digital and analog transmission methods, together with a unified and fair comparison scheme under practical constraints. A universal convergence analysis under various imperfections is established for FL performance evaluation in wireless networks. These analytical results reveal that the fundamental difference between the two paradigms lies in whether communication and computation are jointly designed or not. The digital schemes decouple the communication design from specific FL tasks, making it difficult to support simultaneous uplink transmission of massive devices with limited bandwidth. In contrast, the analog communication allows over-the-air computation (AirComp), thus achieving efficient spectrum utilization. However, computation-oriented analog transmission reduces power efficiency, and its performance is sensitive to computational errors. Finally, numerical simulations are conducted to verify these theoretical observations.