Seizures represent one of the most challenging issues of the neonatal period's neurological emergency. Due to the heterogeneity of etiologies and clinical characteristics, seizures recognition is tricky and time-consuming. Currently, the gold standard for seizure diagnosis is Electroencephalography (EEG), whose correct interpretation requires a highly specialized team. Thus, to speed up and facilitate the detection of ictal events, several EEG-based Neonatal Seizure Detectors (NSDs) have been proposed in the literature. Research is currently exploiting more simple and less invasive approaches, such as Electrocardiography (ECG). This work aims at developing an ECG-based NSD using a Generalized Linear Model with features extracted from Heart Rate Variability (HRV) measures as input. The method is validated on a public dataset of 52 subjects (33 with seizures and 19 seizure-free). Achieved encouraging results show 69% Concatenated Area Under the ROC Curve (AUCcc) for the automatic detection of windows with seizure events, confirming that HRV features can be useful to catch the cardio-regulatory system alterations due to neonatal seizure events, particularly those related to Hypoxic-Ischaemic Encephalopathies. Thus, results suggest the use of ECG-based NSDs in clinical practice, especially when a timely diagnosis is needed and EEG technologies are not readily available.Clinical Relevance- An ECG-based Neonatal Seizure Detector could be a valid support to speed up the diagnosis of neonatal seizures, especially when EEG technologies for infants' neurological assessment are not readily available.
Bipolar Disorder (BD) is characterized by an alternation of mood states from depression to (hypo)mania. Mixed states, i.e., a combination of depression and mania symptoms at the same time, can also be present. The diagnosis of this disorder in the current clinical practice is based only on subjective interviews and questionnaires, while no reliable objective psychophysiological markers are available. Furthermore, there are no biological markers predicting BD outcomes, or providing information about the future clinical course of the phenomenon. To overcome this limitation, here we propose a methodology predicting mood changes in BD using heartbeat nonlinear dynamics exclusively, derived from the ECG. Mood changes are here intended as transitioning between two mental states: euthymic state (EUT), i.e., the good affective balance, and non-euthymic (non-EUT) states. Heart Rate Variability (HRV) series from 14 bipolar spectrum patients (age: 33.439.76, age range: 23-54; 6 females) involved in the European project PSYCHE, undergoing whole night ECG monitoring were analyzed. Data were gathered from a wearable system comprised of a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire ECGs. Each patient was monitored twice a week, for 14 weeks, being able to perform normal (unstructured) activities. From each acquisition, the longest artifact-free segment of heartbeat dynamics was selected for further analyses. Sub-segments of 5 minutes of this segment were used to estimate trends of HRV linear and nonlinear dynamics. Considering data from a current observation at day t0, and past observations at days (t₋₁, t₋₂,...,), personalized prediction accuracies in forecasting a mood state (EUT/non-EUT) at day t+1 were 69% on average, reaching values as high as 83.3%. This approach opens to the possibility of predicting mood states in bipolar patients through heartbeat nonlinear dynamics exclusively.
The early detection of neurodevelopmental disorders in newborns is of utmost importance in clinical practice. Recently, to predict the neurodevelopment scores in preterms, Artificial Intelligence (AI) methods have been proposed mainly based on Electroencephalographic (EEG) or heart rate variability (HRV) analysis. In this work, HRV measures of preterm newborns with and without Sepsis are computed and used as input features of AI regression models. The study assesses the reliability of such features in predicting BAYLEY-III scores obtained during the clinical follow-up at 6- and 12-months. Forty-eight preterms (gestational age $27.8{\pm }1.8$ weeks) were involved, 27 of which were diagnosed with Sepsis. HRV analysis was performed on ECG signals recorded at the corrected term age. BAYLEY-III score prediction was implemented, considering HRV features as input predictors of ensemble regression models. Models were validated using the Leave-One-Subject-Out (LOSO) framework. Encouraging results were achieved, with a Mean Absolute Error (MAE) < 5 points for the Sepsis group in the BAYLEY-III cognitive and language scales at 6- and 12-months. Preliminary results suggested that the autonomic nervous system development may be linked to central nervous system maturation. HRV features, and AI regression models could predict alterations that affect the correct neurodevelopment of newborns.
We present a study focused on a quantitative estimation of a human-horse dynamic interaction. A set of measures based on magnitude and phase coupling between heartbeat dynamics of both humans and horses in three different conditions is reported: no interaction, visual/olfactory interaction and grooming. Specifically, Magnitude Squared Coherence (MSC), Mean Phase Coherence (MPC) and Dynamic Time Warping (DTW) have been used as estimators of the amount of coupling between human and horse through the analysis of their heart rate variability (HRV) time series in a group of eleven human subjects, and one horse. The rationale behind this study is that the interaction of two complex biological systems go towards a coupling process whose dynamical evolution is modulated by the kind and time duration of the interaction itself. We achieved a congruent and consistent statistical significant difference for all of the three indices. Moreover, a Nearest Mean Classifier was able to recognize the three classes of interaction with an accuracy greater than 70%. Although preliminary, these encouraging results allow a discrimination of three distinct phases in a real human-animal interaction opening to the characterization of the empirically proven relationship between human and horse.
Making use of the poroelastic theory for hydrated polymeric matrices, the ultrasound (US) propagation in a gel medium filled by spherical cells is studied . The model describes the connection between the poroelastic structure of living means and the propagation behavior of the acoustic waves. The equation of fast compressional wave, its phase velocity and its attenuation as a function of the elasticity, porosity and concentration of the cells into the gel external matrix are investigated. The outcomes of the theory agree with the measurements done on PVA gel scaffolds inseminated by porcine liver cells at various concentrations. The model is promising in the quantitative non-invasive estimation of parameters that could asses the change in the tissue structure, composition and architecture.
In this paper a novel and efficient computational implementation of a Spiking Neuron-Astrocyte Network (SNAN) is reported. Neurons are modeled according to the Izhikevich formulation and the neuron-astrocyte interactions are intended as tripartite synapsis and modeled with the previously proposed nonlinear transistor-like model. Concerning the learning rules, the original spike-timing dependent plasticity is used for the neural part of the SNAN whereas an ad-hoc rule is proposed for the astrocyte part. SNAN performances are compared with a standard spiking neural network (SNN) and evaluated using the polychronization concept, i.e., number of co-existing groups that spontaneously generate patterns of polychronous activity. The astrocyte-neuron ratio is the biologically inspired value of 1.5. The proposed SNAN shows higher number of polychronous groups than SNN, remarkably achieved for the whole duration of simulation (24 hours).
This paper reports on a multiclass arousal recognition system based on autonomic nervous system linear and nonlinear dynamics during affective visual elicitation. We propose a new hybrid method based on Lagged Poincaré Plot (LPP) and symbolic analysis, hereinafter called LPP symb . This tool uses symbolic analysis to evaluate the irregularity of the trends of Lagged Poincaré Plot (LPP) quantifiers over the lags, and is here applied to investigate complex Heart Rate Variability (HRV) changes during emotion stimuli. In the experimental protocol 22 healthy subjects were elicited through a passive visualization of affective images gathered from the international affective picture system. LPP symb and standard HRV analysis (defined in time and frequency domains) were applied to HRV series of one minute length. Then, an ad-hoc pattern recognition algorithm based on quadratic discriminant classifier was implemented and validated through a leave-onesubject-out procedure. The best performance of the proposed classification algorithm for recognizing the four classes of arousal was obtained using nine features comprising heartbeat complex dynamics, achieving an accuracy of 71.59%.