JC-001 is a Chinese medicine that can modulate the immunity in Hepa 1-6 tumor-bearing mice, and we questioned whether JC-001 can serve as efficient adjuvant chemotherapy. We aimed to identify a novel approach for enhancing cis-diamminedichloroplatinum (II) (CDDP)-based chemotherapy by immunomodulation. The anti-tumor activity in vitro was determined based on foci formation and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A LLC1 tumor xenograft model was used to analyze the activity of tumor rejection in vivo. The tumors were analyzed through hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) staining and cytokine arrays. JC-001 suppressed foci formation and reduced the viability of Lewis lung carcinoma (LLC1) cells in vitro. JC-001 suppressed LLC1 tumor growth in immunodeficient BALB/c nude mice and in immunocompetent C57BL/6 mice to an even greater extent. Furthermore, JC-001 up-regulated interferon-γ expression in the tumor microenvironment, enhanced the Th1 response in tumor-bearing mice, and increased the chemosensitivity of LLC1 tumors to CDDP chemotherapy. The results of our study suggest that JC-001 is associated with low cytotoxicity and can significantly suppress tumor growth by enhancing the Th1 response. JC-001 is a Chinese medicine with potential clinical applications in CDDP-based chemotherapeutic regimens.
CX3CL1 is a unique chemokine, expressed in both soluble and membrane bound forms, which mediates different biological activities. Recent studies have revealed the potential of CX3CL1 signaling pathway as a target for the treatment of inflammation and cancer. The correlation between expression of CX3CL1 and prognosis of patients varies among cancers. In this study, based on CX3CL1 immunohistochemistry in non‐small cell lung cancer, CX3CL1 levels were positively associated with cancer stage (Pearson chi‐square, P = 0.048) and lymph node status ( P = 0.033). Interestingly, survival effects of CX3CL1 were only observed in patients with smoking history and adenocarcinoma (AD, log rank, P = 0.027), but not in patients with squamous cell carcinoma (SQ). The median survival time of patients with smoking history and low level CX3CL1 expressing AD was 1538 days, while that of patients with smoking history and high level CX3CL1 expressing AD was 396 days. Cox regression models showed adverse effects of high CX3CL1 levels only in AD patients with smoking history (hazard ratio = 3.01, p = 0.034), but not in AD patients without smoking history or in SQ patients with smoking history. The results of this study suggest that CX3CL1 plays different roles in lung tumorigenesis in smokers and non‐smokers, and different CX3CL1‐based therapeutic strategies are needed depending on patient smoking status and tumor type. Furthermore, high level of CX3CL1 expression enhances nodal metastasis by activating JNK & MMP2/MMP9 activity in lung cancer cells.
Slit2 expression is downregulated in various cancers, including lung cancer. We identified two Slit2 splicing variants at exon15-Slit2-WT and Slit2-ΔE15. In the RT-PCR analyses, the Slit2-WT isoform was predominantly expressed in all the lung cancer specimens and in their normal lung counterparts, whereas Slit2-ΔE15 was equivalently or predominantly expressed in 41% of the pneumothorax specimens. A kRasG12D transgenic mice system was used to study the effects of tumorigenesis on the expressions of the Slit2-exon15 isoforms. The results revealed that a kRasG12D-induced lung tumor increased the Slit2-WT/Slit2-ΔE15 ratio and total Slit2 expression level. However, the lung tumors generated via a tail vein injection of lung cancer cells decreased the Slit2-WT/Slit2-ΔE15 ratio and total Slit2 expression level. Interestingly, the lipopolysaccharide (LPS)-induced lung inflammation also decreased the Slit2-WT/Slit2-ΔE15 ratio. Since Slit2 functions as an anti-inflammatory factor, the expression of Slit2 increases in kRasG12D lungs, which indicates that Slit2 suppresses immunity during tumorigenesis. However, an injection of lung cancer cells via the tail vein and the LPS-induced lung inflammation both decreased the Slit2 expression. The increased Slit2 in the tumor microenvironment was mostly Slit2-WT, which lacks growth inhibitory activity. Thus, the results of our study suggested that the upregulation of Slit2-WT, but not Slit2-ΔE15, in a cancer microenvironment is an important factor in suppressing immunity while not interfering with cancer growth.
The Wnt/frizzled cell signaling pathway has been implicated in the determination of polarity in a number of systems, including the Drosophila retina. The vertebrate retina develops from an undifferentiated neuroepithelium into an organized and laminated structure that demonstrates a high degree of polarity at both the tissue and cellular levels. In the process of searching for molecules that are preferentially expressed by the vertebrate retinal pigment epithelium (RPE), we identified secreted frizzled-related protein 5 (SFRP5), a member of the SFRP family that appears to act by modulating Wnt signal transduction. SFRP5 is highly expressed by RPE cells, and is also expressed in the pancreas. Within the retina, the related molecule SFRP2 is expressed specifically by cells of the inner nuclear layer. Thus, photoreceptors are likely to be bathed by two opposing gradients of SFRP molecules. Consistent with SFRP5's postulated role in modulating Wnt signaling in the retina, it inhibits the ability of Xwnt-8 mRNA to induce axis duplication in Xenopus embryos. The human SFRP5 gene consists of three coding exons and it maps to chromosome 10q24.1; human SFRP2 maps to 4q31.3. Based on the biology and complementary expression patterns of SFRP2 and SFRP5, we suggest that they may be involved in determining the polarity of photoreceptor, and perhaps other, cells in the retina.
The doubling of the plant genome causes some obvious morphological and physiological changes, and DNA cytosine methylation variation is a key epigenetic component that helps neopolyploids overcome challenges and acquire advantages. To help interpret the molecular and phenotypic changes after whole-genome doubling (WGD), we conducted whole-genome bisulfite sequencing (BS-seq) and transcriptomic analyses of autotetraploid and diploid accessions of grape (Vitis vinifera L.) and found that autotetraploid leaf thickness, photosynthetic and antioxidant capacity increased and anthocyanin coloring decreased compared with diploids. From the global perspective, genome doubling did not bring significant changes to the methylation of the whole genome. In different grape genomic regions, high levels of methylation occurred in transposable elements (TEs), introns and promoter regions. Autotetraploid ‘G4X’ grapes had significantly decreased levels of CG and CHH methylation in the TE body relative to diploid ‘G2X’ grapes. Differentially methylated regions (DMRs) between diploid and autotetraploid grapes were related to 1649 hypermethylated and 3418 hypomethylated differentially methylated genes (DMGs), which were enriched in lipid metabolism, phytohormone action in, cell wall organization, redox homeostasis, photosynthesis, and secondary metabolism. Gene expression changes also appeared in autopolyploidization processes, and a total of 68 genes overlapped between the DMGs and differentially expressed genes (DEGs), among which 41 key candidate genes were enriched in five processes related to phenotypic differences. We found that both DMGs and DEGs were enriched in secondary metabolite and anthocyanin biosynthesis, which is related to phenotypic changes in grape polyploid. Collectively, our results show epigenetic modifications in autopolyploid grapes for the first time and support the hypothesis that polyploidization-induced methylation is an important cause of phenotypic alterations.
Mutations in the Drosophila rdgB gene, which encodes a transmembrane phosphatidylinositol transfer protein (PITP), cause a light-enhanced retinal degeneration. Cloning of mammalian rdgB orthologs (mrdgB) reveal predicted proteins that are 39% identical to rdgB, with highest homology in the N-terminal PITP domain (62%) and in a region near the C terminus (65%). The human mrdgB gene spans approximately 12 kb and maps to 11q13.1, a locus where several retinal diseases have also been mapped. Murine mrdgB maps to a syntenic region on the proximal region of chromosome 19. MrdgB is specifically expressed in the retina and brain. In the retina, MrdgB protein is localized to photoreceptor inner segments and the outer and inner plexiform layers. Expression of murine mrdgB in mutant flies fully rescues both the rdgB-dependent retinal degeneration and abnormal electroretinogram. These results suggest the existence of similarities between the invertebrate and mammalian retina that were not previously appreciated and also identify mrdgB as a candidate gene for retinal diseases that map to 11q13.1.