Transformation of FR3T3 rat fibroblasts by a c-Ha-ras oncogene but not by bovine papillomavirus type 1 is associated with an increase in the abundance of mRNAs from prototype strain MVMp of infecting minute virus of mice, an oncosuppressive parvovirus. This differential parvovirus gene expression correlates with the reported sensitization of ras- but not bovine papillomavirus type 1-transformed cells to the killing effect of MVMp (N. Salomé, B. van Hille, N. Duponchel, G. Meneguzzi, F. Cuzin, J. Rommelaere, and J. Cornelis, Oncogene 5:123-130, 1990). Experiments were performed to determine at which level parvovirus expression is up-regulated in ras transformants. An MVMp "attenuation" sequence responsible for the premature arrest of RNA elongation was either placed or not placed in front of the chloramphenicol acetyltransferase gene and brought under the control of MVMp early promoter P4. Although the MVMp attenuator reduced P4-driven chloramphenicol acetyltransferase expression, the extent of attenuation was similar in normal and ras-transformed cells. Moreover, the analysis of P4-directed viral RNAs in MVMp-infected cultures by RNase protection and nuclear run-on assays also revealed a transcription elongation block of a similar amplitude in both types of cells. In addition, the stabilities of the three major parvoviral mRNAs did not vary significantly between normal and ras-transformed cells. Hence, it is concluded that the ras-induced increase in the accumulation of parvoviral mRNAs is mainly controlled at the level of transcription. Consistently, the TATA motif of the P4 promoter proved to have a differential photoreactivity when tested by in vivo UV footprinting assays in ras-transformed versus normal cells.
Abstract We have determined the complete nucleotide sequence of the mitochondrial DNA (mtDNA) of the dogfish, Scyliorhinus canicula. The 16,697-bp-long mtDNA possesses a gene organization identical to that of the Osteichthyes, but different from that of the sea lamprey Petromyzon marinus. The main features of the mtDNA of osteichthyans were thus established in the common ancestor to chondrichthyans and osteichthyans. The phylogenetic analysis confirms that the Chondrichthyes are the sister group of the Osteichthyes.
The activity of the P4 promoter of the parvovirus minute virus of mice (prototype strain MVMp) is stimulated in ras-transformed FREJ4 cells compared with the parental FR3T3 line. This activation may participate in the oncolytic effect of parvoviruses, given that P4 drives a transcriptional unit encoding cytotoxic nonstructural proteins. Our results suggest that the higher transcriptional activity of promoter P4 in FREJ4 cells is mediated at least in part by upstream CRE elements. Accordingly, mutations in the CRE motifs impair P4 function more strongly in the FREJ4 derivative than in its FR3T3 parent. Further evidence that these elements contribute to hyperactivity of the P4 promoter in the ras transformant is the fact that they form distinct complexes with proteins from FREJ4 and FR3T3 cell extracts. This difference can be abolished by treating the FREJ4 cell extracts with cyclic AMP-dependent protein kinase (PKA) or treating original cultures with a PKA activator. These findings can be linked with two previously reported features of ras-transformed cells: the activation of a PKA-inhibited protein kinase cascade and the reduction of PKA-induced protein phosphorylation. In keeping with these facts, P4-directed gene expression can be up- or downmodulated in vivo by exposing cells to known inhibitors or activators of PKA, respectively.
We localized and characterized a new regulatory element with promoter activity in the human c-ets-2 intron 1. This promoter governs the expression of 5' divergent c-ets-2 transcripts through multiple start sites dispersed within 300 bp. Among the multiple start sites detected, three are major transcriptional initiation points. We detected transcripts initiated from this new promoter in various cell lines such as COLO 320, NBE, or HepG2 cells. This promoter exhibits transcriptional activity when linked to the CAT gene, and deletion constructs reveal that it contains activating and repressing elements. The sequence of the promoter reveals putative binding sites for ETS, MYB, GATA, and Oct factors. In addition, we show that this promoter is functionally conserved in the chicken.
// Constance Vennin 1,2 , Nathalie Spruyt 3 , Fatima Dahmani 3 , Sylvain Julien 1,2 , François Bertucci 4 , Pascal Finetti 4 , Thierry Chassat 5 , Roland P. Bourette 3 , Xuefen Le Bourhis 1,2 and Eric Adriaenssens 1,2 1 INSERM U908, Cell Plasticity and Cancer, F-59655, Villeneuve d’Ascq, France 2 University of Lille, F-59655, Villeneuve d’Ascq, France 3 CNRS UMR 8161, F-59021, Lille, France 4 Paoli-Calmettes Institute, Aix -Marseille University, F-13009, Marseille, France 5 PLETHA, Institut Pasteur Lille, F-59019, Lille, France Correspondence to: Eric Adriaenssens, email: // Keywords : H19, miRNA, breast cancer, CBL, tyrosine kinase receptor Received : April 28, 2015 Accepted : July 16, 2015 Published : July 22, 2015 Abstract H19 is a long non-coding RNA precursor of miR-675microRNA. H19 is increasingly described to play key roles in the progression and metastasis of cancers from different tissue origins. We have previously shown that the H19 gene is activated by growth factors and increases breast cancer cell invasion. In this study, we established H19 /miR-675 ectopic expression models of MDA-MB-231 breast cancer cells to further investigate the underlying mechanisms of H19 oncogenic action. We showed that overexpression of H19 /miR-675 enhanced the aggressive phenotype of breast cancer cells including increased cell proliferation and migration in vitro , and increased tumor growth and metastasis in vivo . Moreover, we identified ubiquitin ligase E3 family (c-Cbl and Cbl-b) as direct targets of miR-675 in breast cancer cells. Using a luciferase assay, we demonstrated that H19 , through its microRNA, decreased both c-Cbl and Cbl-b expression in all breast cancer cell lines tested. Thus, by directly binding c-Cbl and Cbl-b mRNA, miR-675 increased the stability and the activation of EGFR and c-Met, leading to sustained activation of Akt and Erk as well as enhanced cell proliferation and migration. Our data describe a novel mechanism of protumoral action of H19 in breast cancer.
The complete nucleotide sequence of the mitochondrial DNA of the amphioxus Branchiostoma lanceolatum has been determined. This mitochondrial genome is small (15 076 bp) because of the short size of the two rRNA genes and the tRNA genes. In addition, this genome contains a very short non-coding region (57 bp) with no sequence reminiscent of a control region. The organisation of the coding genes, as well as of the two rRNA genes, is identical to that of the sea lamprey. Some differences in the repartition of the tRNA genes occur when compared to the lamprey. The mitochondrial codon usage of the amphioxus is reminiscent of that of urochordates since the AGA codon is read as a glycine and not as a stop codon as in vertebrates. Moreover, the base composition at the wobble positions of the codon is strongly biased toward guanine. Altogether, these data clearly emphasise the close relationships between amphioxus and vertebrates, and reinforce the notion that prochordates may be viewed as the brother group of vertebrates.
Cultures of established rat fibroblasts transformed by the avian erythroblastosis virus were more susceptible to the cytopathic effect of the autonomous parvovirus minute virus of mice, prototype strain (MVMp), than were their untransformed homologs. This effect could be ascribed to the presence of a greater fraction of cells that were sensitive to the killing action of MVMp in transformed cultures than in their normal parents. Yet, transformed and normal lines were similarly efficient in virus uptake, DNA amplification, and capsid protein synthesis. In contrast, transformants accumulated 2.5- to 3-fold greater amounts of all three major MVM mRNA species and nonstructural protein than did their normal progenitors. Thus, in this system transformation-associated sensitization of cells to MVMp appears to correlate primarily with an increase in their capacity for the expression of the viral transcription unit which encodes nonstructural proteins and is controlled by the P4 promoter. Consistently, a reporter gene was expressed at a higher level by transformed versus normal cultures, when placed under the control of the MVM P4 promoter. As infectious MVMp was produced in larger amounts by transformed cultures, a late step of the parvoviral cycle, such as synthesis, encapsidation of progeny DNA, or both, was also stimulated in the transformed cells.
// Souhila Abdelfettah 4 , Gaylor Boulay 1 , Marion Dubuissez 3 , Nathalie Spruyt 4 , Sara P. Garcia 1 , Shruthi Rengarajan 1 , Ingrid Loison 4 , Xavier Leroy 2 , Miguel N. Rivera 1 and Dominique Leprince 4 1 Department of Pathology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA 2 Department of Pathology, University de Lille, CHU de Lille, F-59000 Lille, France 3 Present Address: Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada 4 University de Lille, CNRS, Institut Pasteur de Lille, UMR 8161m M3T, Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France Correspondence to: Dominique Leprince, email: dominique.leprince@ibl.cnrs.fr Keywords: hPCL3S; PHF19; PRC2; β-catenin; prostate cancer Received: September 19, 2019 Accepted: February 17, 2020 Published: March 24, 2020 ABSTRACT Polycomb repressive complex 2 (PRC2) allows the deposition of H3K27me3. PRC2 facultative subunits modulate its activity and recruitment such as hPCL3/PHF19, a human ortholog of Drosophila Polycomb-like protein (PCL). These proteins contain a TUDOR domain binding H3K36me3, two PHD domains and a “Winged-helix” domain involved in GC-rich DNA binding. The human PCL3 locus encodes the full-length hPCL3L protein and a shorter isoform, hPCL3S containing the TUDOR and PHD1 domains only. In this study, we demonstrated by RT-qPCR analyses of 25 prostate tumors that hPCL3S is frequently up-regulated. In addition, hPCL3S is overexpressed in the androgen-independent DU145 and PC3 cells, but not in the androgen-dependent LNCaP cells. hPCL3S knockdown decreased the proliferation and migration of DU145 and PC3 whereas its forced expression into LNCaP increased these properties. A mutant hPCL3S unable to bind H3K36me3 (TUDOR-W50A) increased proliferation and migration of LNCaP similarly to wt hPCL3S whereas inactivation of its PHD1 domain decreased proliferation. These effects partially relied on the up-regulation of genes known to be important for the proliferation and/or migration of prostate cancer cells such as S100A16, PlexinA2 , and Spondin1 . Collectively, our results suggest hPCL3S as a new potential therapeutic target in castration resistant prostate cancers.