In models with an extra SU(2) R gauge group and an extended scalar sector, the cascade decays of the W ′ boson can provide various multiboson signals. In particular, diboson decays W ′ → W Z can be suppressed while W ′ → W ZX, with X one of the scalars present in the model, can reach branching ratios around 4%. We discuss these multiboson signals focusing on possible interpretations of the ATLAS excess in fat jet pair production.
Several topics on $CP$ violation in the lepton sector are reviewed. A few theoretical aspects concerning neutrino masses, leptonic mixing, and $CP$ violation will be covered, with special emphasis on seesaw models. A discussion is provided on observable effects which are manifest in the presence of $CP$ violation, particularly, in neutrino oscillations and neutrinoless double beta decay processes, and their possible implications in collider experiments such as the LHC. The role that leptonic $CP$ violation may have played in the generation of the baryon asymmetry of the Universe through the mechanism of leptogenesis is also discussed.
A bstract Scalar triplet extensions of the Standard Model provide an interesting playground for the explanation of neutrino mass suppression through the type-II seesaw mechanism. Propelled by the possible connections with leptonic CP violation, we explore under which conditions spontaneous CP violation can arise in models with extra scalar triplets. The minimal model satisfying such conditions requires adding two such triplets to the SM field content. For this model, the scalar mass spectrum in both the CP-conserving and spontaneous CP-violating scenarios is studied. In the former case, a decoupling limit for the new scalars can be achieved, while this is not the case when CP is spontaneously broken. In particular, we show that the existence of two light neutral scalars with masses below a few tenths of GeVs is unavoidable in the CP-violating case. Using matrix theory theorems, we derive upper bounds for the masses of those light scalars and briefly examine whether they can still be experimentally viable. Other interesting features of the scalar mass spectrum are discussed as, e.g., the existence of relations among the charged and neutral scalar masses.
We propose a minimal model where a dark sector, odd under a Z2 discrete symmetry, is the seed of lepton number violation in the neutrino sector at the loop level, in the context of the linear seesaw mechanism. Neutrino mass suppression stems from a naturally small scalar potential coupling which breaks the lepton number symmetry softly. The fact that we consider (dark) Dirac vector-like neutral leptons, prevents the appearance of other mass terms that could contribute to neutrino masses via alternative mechanisms. We study the dark-matter phenomenology of the model, focusing on the case in which the stable particle is the lightest neutral scalar arising from the dark scalar sector. Prospects for testing our framework with the results of current and future lepton flavour violation searches are also discussed.
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage.
DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals.
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach", is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
The minimal type-I seesaw framework with texture-zero Yukawa and mass matrices inspired by Occam's razor is incompatible with normally-ordered neutrino masses (currently preferred by data) when lepton mixing originates solely from the neutrino sector. Moreover, the lightest right-handed neutrino mass required to generate the observed baryon asymmetry of the Universe via leptogenesis ($M_1 \sim 10^{14}$ GeV) is in conflict with vanilla scenarios for (Peccei-Quinn) axion dark matter where the reheating temperature of the Universe is typically below $10^{12}$ GeV. In this Letter, we present a perfect Occam's razor setup which overcomes these problems by including charged-lepton mixing parametrized by a single angle, which is predicted to be very close to the quark Cabibbo angle. Furthermore, the atmospheric mixing angle lies in the second octant and the leptogenesis scale is lowered to $\sim 2\times 10^{10}$ GeV, lifting the tension with the axion dark-matter hypothesis.
We propose a generalized Kim-Shifman-Vainshtein-Zakharov-type axion framework in which colored fermions and scalars act as two-loop Majorana neutrino-mass mediators. The global Peccei-Quinn symmetry under which exotic fermions are charged solves the strong CP problem. Within our general proposal, various setups can be distinguished by probing the axion-to-photon coupling at helioscopes and haloscopes. We also comment on axion dark-matter production in the early Universe.