Tissue repair/wound healing, in which angiogenesis plays an important role, is a critical step in many diseases including chronic wound, myocardial infarction, stroke, cancer, and inflammation. Recently, we were the first to report that orphan nuclear receptor TR3/Nur77 is a critical mediator of angiogenesis and its associated microvessel permeability. Tumor growth and angiogenesis induced by VEGF-A, histamine, and serotonin are almost completely inhibited in Nur77 knockout mice. However, it is not known whether TR3/Nur77 plays any roles in wound healing. In these studies, skin wound-healing assay was performed in 3 types of genetically modified mice having various Nur77 activities. We found that ectopic induction of Nur77 in endothelial cells of mice is sufficient to improve skin wound healing. Although skin wound healing in Nur77 knockout mice is comparable to the wild-type control mice, the process is significantly delayed in the EC-Nur77-DN mice, in which a dominant negative Nur77 mutant is inducibly and specifically expressed in mouse endothelial cells. By a loss-of-function assay, we elucidate a novel feed-forward signaling pathway, integrin β4 → PI3K → Akt → FAK, by which TR3 mediates HUVEC migration. Furthermore, TR3/Nur77 regulates the expression of integrin β4 by targeting its promoter activity. In conclusion, expression of TR3/Nur77 improves wound healing by targeting integrin β4. TR3/Nur77 is a potential candidate for proangiogenic therapy. The results further suggest that TR3/Nur77 is required for pathologic angiogenesis but not for developmental/physiologic angiogenesis and that Nur77 and its family members play a redundant role in normal skin wound healing.-Niu, G., Ye, T., Qin, L., Bourbon, P. M., Chang, C., Zhao, S., Li, Y., Zhou, L., Cui, P., Rabinovitz, I., Mercurio, A. M., Zhao, D., Zeng, H. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin b4. FASEB J. 29, 131–140 (2015). www.fasebj.org
Unlike many solid tumors, epithelial ovarian cancer (EOC) has a clear metastatic predilection to the adipocyte-rich niche, especially the omentum. However, the underlying mechanism driving this process remains incomplete. Here we show that SphK1 is over-expressed in omental metastases compared with ovarian primary tumors in EOC patients. In vitro, inhibition of SphK1 suppressed the metastatic ability of EOC induced by adipocytes. In vivo, blockage of SphK1 could attenuate the omental metastasis of EOC. Importantly, SphK1 modulates adipocyte-induced E/N-cadherin switch through Twist1, a key process in EOC metastasis. Our study reveals a previously unrecognized role of SphK1 in modulating the metastatic tropism of EOC to the adipocyte-rich niche, suggesting a new target for EOC therapy.
TR3 has been reported to be an excellent target for angiogenesis therapies. We reported three TR3 transcript variant messenger RNAs (mRNAs) are expressed in human umbilical vein endothelial cell (HUVEC) and are differentially regulated by vascular endothelial growth factor (VEGF). TR3 transcript variant 1 (TR3-TV1) and variant 2 (TR3-TV2) encoding the same TR3 isoform 1 protein (TR3-iso1) that was named TR3 has been extensively studied. However, the function of TR3 isoform 2 protein (TR3-iso2) encoded by TR3 transcript variant 3 (TR3-TV3) is still not known. Here, we clone and express the novel TR3-iso2 protein and find that expression of TR3-iso2, in contrast to TR3-iso1, inhibits endothelial cell proliferation induced by VEGF-A, histamine, and phorbol-12-myristate-13-acetate (PMA). The differential function of TR3-iso2 correlates with the down-regulation of cyclin D1. However, TR3-iso2 plays similar roles in endothelial cell migration and monolayer permeability as TR3-iso1. We further demonstrate that several intracellular signaling pathways are involved in histamine-induced TR3 transcript variants, including histamine receptor H1-mediated phospholipase C (PLC)/calcium /calcineurin/protein kinase C (PKC)/protein kinase D (PKD) pathway and ERK pathway, as well as histamine receptor H3-mediated PKC-ERK pathway. Further, expressions of TR3-TV1, TR3-TV2, and TR3-TV3 by VEGF and histamine are regulated by different promoters, but not by their mRNA stability.
Abstract Epithelial ovarian cancer (EOC) is the leading cause of deaths due to cancer in women. Adipocytes have been suggested to play a key role in the stimulation of EOC growth. However, the mechanisms underlying the adipocyte-induced EOC proliferation remain undefined. Here, we provide the first evidence that adipocytes induce the activation of sphingosine kinase (SphK) 2 in EOC, which represents a novel pathway that mediates the adipocyte-induced EOC growth. SphK2 inhibition in EOC cells led to a remarkable inhibition of the adipocyte-induced cell proliferation. Moreover, the adipocyte-induced SphK2 activation in EOC cells was extracellular signal-regulated protein kinases (ERK) dependent. Furthermore, silencing SphK2 in EOC significantly inhibited the adipocyte-induced expression of phospho-ERK and c-Myc, two crucial players in EOC growth. Collectively, the current study unraveled a previously unrecognized role of SphK2 in the adipocyte-induced growth-promoting action in EOC, suggesting a novel target for EOC treatment.
// Yan Li 1,2,* , Pierre M. Bourbon 3,* , Marianne A. Grant 1 , Jin Peng 1,4 , Taiyang Ye 1,5 , Dezheng Zhao 1,6 and Huiyan Zeng 1 1 Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA 2 Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Ji-nan, PR China 3 Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA 4 Department of Medical Oncology and Radiation Oncology, Zhongnan Hospital of Wuhan University, Wuhan, PR China 5 Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China 6 Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA * These authors contributed equally to this work Correspondence: Dezheng Zhao, email: // Huiyan Zeng, email: // Keywords : actin stress fibers, migration, permeability, proliferation, protein binding site Received : April 30, 2015 Accepted : June 05, 2015 Published : June 25, 2015 Abstract Pathological angiogenesis is a hallmark of many diseases. We demonstrated that TR3/Nur77 is an excellent target for pro-angiogenesis and anti-angiogenesis therapies. Here, we report that TR3 transcriptionally regulates endothelial cell migration, permeability and the formation of actin stress fibers that is independent of RhoA GTPase. 1) Amino acid residues 344-GRR-346 and de-phosphorylation of amino acid residue serine 351 in the DNA binding domain, and 2) phosphorylation of amino acid residues in the 41-61 amino acid fragment of the transactivation domain, of TR3 are required for its induction of the formation of actin stress fibers, cell proliferation, migration and permeability. The 41-61 amino acid fragment contains one of the three potential protein interaction motifs in the transactivation domain of TR3, predicted by computational modeling and analysis. These studies further our understanding of the molecular mechanism, by which TR3 regulates angiogenesis, identify novel therapeutic targeted sites of TR3, and set the foundation for the development of high-throughput screening assays to identify compounds targeting TR3/Nur77 for pro-angiogenesis and anti-angiogenesis therapies.
The regulation mechanisms involved in matrix metalloproteinase (MMP) expression and the motility of human endometrial and decidual stromal cells (ESCs and DSCs, respectively) during decidualization remain unclear. DSCs show significant increased cell motility and expression of FOS-like 1 (FOSL1) and MMP1, MMP2, and MMP9 compared with ESCs, whereas lack of decidualization inducers leads to a rapid decrease in FOSL1 and MMP1 and MMP9 expression in DSCs in vitro Therefore, we hypothesized that a link exists between decidualization inducers and FOSL1 in up-regulation of motility during decidualization. Based on the response of ESCs/DSCs to different decidualization systems in vitro, we found that progesterone (P4) alone had no significant effect and that 17β-estradiol (E2) significantly increased cell motility and FOSL1 and MMP1 and MMP9 expression at the mRNA and protein levels, whereas 8-bromo-cAMP significantly decreased cell motility and FOSL1 and MMP9 expression in the presence of P4. In addition, we showed that E2 triggered phosphorylation of estrogen receptor 1 (ESR1), which could directly bind to the promoter of FOSL1 in ESCs/DSCs. Additionally, we also revealed silencing of ESR1 expression by siRNA abrogated E2-induced FOSL1 expression at the transcript and protein levels. Moreover, silencing of FOSL1 expression by siRNA was able to block E2-induced MMP1 and MMP9 expression and cell motility in ESCs/DSCs. Taken together, our data suggest that, in addition to its enhancement of secretory function, the change in MMP expression and cell motility is another component of the decidualization of ESCs/DSCs, including estrogen-dependent MMP1 and MMP9 expression mediated by E2-ESR1-FOSL1 signaling.