Polo-like kinase 1 (PLK1) controls the main cell-cycle checkpoints, suggesting utility of its inhibition for cancer treatment, including of highly proliferative pediatric cancer. This preclinical study explored the selective PLK1 inhibitor volasertib (BI 6727) alone and combined with chemotherapy in pediatric malignancies.Inhibition of proliferation was explored in vitro using dimethylthiazol carboxymethoxyphenyl sulfophenyl tetrazolium (MTS) assay. Mice bearing human xenografts were treated with weekly intravenous injections of volasertib.Volasertib inhibited proliferation in all 40 cell lines tested, with a mean half-maximal growth inhibitory concentration of 313 nmol/l (range: 4-5000 nmol/l). Volasertib was highly active against RMS-1 alveolar rhabdomyosarcoma xenografts, resulting in 100% tumor regression. Activity was associated with complete and prolonged G2/M arrest and subsequent apoptotic cell death. Volasertib showed synergistic activity with vincristine but antagonistic effects with etoposide.These findings support the further exploration of volasertib for pediatric malignancies, particularly alveolar rhabdomyosarcoma, and its combination with mitotic spindle poison.
Abstract Background: Despite its cardiotoxicity doxorubicin is widely used for the treatment of paediatric malignancies. Current treatment regimens appear to be suboptimal as treatment strategies vary and do not follow a clear pharmacological rationale. Standardisation of dosing strategies in particular for infants and younger children is required but is hampered by scarcely defined exposure-response relationships. The aim is to provide a rational dosing concept allowing for a reduction of variability in systemic therapy intensity and subsequently unforeseen side effects. Methods: Doxorubicin plasma concentrations in paediatric cancer patients were simulated for different treatment schedules using a population pharmacokinetic model which considers age-dependent differences in doxorubicin clearance. Overall drug exposure and peak concentrations were assessed. Simulation results were used to support a three round Delphi consensus procedure with the aim to clarify the pharmacological goals of doxorubicin dosing in young children. A group of 28 experts representing paediatric trial groups and clinical centres were invited to participate in this process. Results: Pharmacokinetic simulations illustrated the substantial differences in therapy intensity associated with current dosing strategies. Consensus among the panel members was obtained on a standardised a priori dose adaptation that individualises doxorubicin doses based on age and body surface area targeting uniform drug exposure across children treated with the same protocol. Further, a reduction of peak concentrations in very young children by prolonged infusion was recommended. Conclusions: An approach to standardise current dose modification schemes in young children is proposed. The consented concept takes individual pharmacokinetic characteristics into account and involves adaptation of both the dose and the infusion duration potentially improving the safety of doxorubicin administration.
Background: In the international AIEOP-BFM ALL 2009 trial, asparaginase (ASE) activity was monitored after each dose of pegylated Escherichia coli ASE (PEG-ASE). Two methods were used: the aspartic acid β-hydroxamate (AHA) test and medac asparaginase activity test (MAAT). As the latter method overestimates PEG-ASE activity because it calibrates using E. coli ASE, method comparison was performed using samples from the AIEOP-BFM ALL 2009 trial. Methods: PEG-ASE activities were determined using MAAT and AHA test in 2 sets of samples (first set: 630 samples and second set: 91 samples). Bland–Altman analysis was performed on ratios between MAAT and AHA tests. The mean difference between both methods, limits of agreement, and 95% confidence intervals were calculated and compared for all samples and samples grouped according to the calibration ranges of the MAAT and the AHA test. Results: PEG-ASE activity determined using the MAAT was significantly higher than when determined using the AHA test ( P < 0.001; Wilcoxon signed-rank test). Within the calibration range of the MAAT (30–600 U/L), PEG-ASE activities determined using the MAAT were on average 23% higher than PEG-ASE activities determined using the AHA test. This complies with the mean difference reported in the MAAT manual. With PEG-ASE activities >600 U/L, the discrepancies between MAAT and AHA test increased. Above the calibration range of the MAAT (>600 U/L) and the AHA test (>1000 U/L), a mean difference of 42% was determined. Because more than 70% of samples had PEG-ASE activities >600 U/L and required additional sample dilution, an overall mean difference of 37% was calculated for all samples (37% for the first and 34% for the second set). Conclusions: Comparison of the MAAT and AHA test for PEG-ASE activity confirmed a mean difference of 23% between MAAT and AHA test for PEG-ASE activities between 30 and 600 U/L. The discrepancy increased in samples with >600 U/L PEG-ASE activity, which will be especially relevant when evaluating high PEG-ASE activities in relation to toxicity, efficacy, and population pharmacokinetics.
Drug ototoxicity limits the quality of life of patients after treatment, having serious consequences, especially for psychosocial development of children. Although the ototoxicity of many drugs resolves after treatment discontinuation, the use of platinum derivatives and aminoglycosides is associated with permanent hearing loss. In this review, we have listed ototoxic drugs and the mechanisms by which they damage the ears. Moreover, possible protective strategies and important methods for early detection of ototoxic effects are discussed.
Polo-like kinase 1 (PLK1) is a regulator of mitosis and its upregulation in tumours is often associated with poor prognosis. Although PLK1 inhibitors have already entered phase 1 clinical trials, little is known about their impact on the treatment of paediatric malignancies. Thus, we evaluated the concept of PKL1 inhibition by testing the effects of the PLK1 inhibitor GW843682X alone and in combination with the topoisomerase 1 inhibitor, camptothecin, against a panel of 18 paediatric tumour cell lines. Cytotoxicity was evaluated by MTT test and by caspase 3/7 activation. Expression of target was confirmed by western blot analysis. Expression of ATP binding cassette transporters was analysed by quantitative real-time reverse transcription PCR. GW843682X significantly inhibited cell growth in all 18 cell lines. Concentrations, which inhibited cell growth by 50% compared with untreated controls after 72 h, ranged from 0.02 to 11.7 μmol/l. Apart from the N-Myc-amplified neuroblastoma cell lines, the osteosarcoma cell lines MNNG-HOS and OST, which are highly resistant to standard anticancer drugs, were sensitive to GW843682X. The toxicity of GW843682X was dependent neither on the ATP binding cassette drug transporter expression nor on the p53 mutation status. Neither synergistic nor antagonistic effects were observed for the combination of GW843682X and camptothecin in 14 cell lines. GW843682X showed considerable toxicity against a panel of paediatric tumour cell lines suggesting that PLK1 inhibitors under clinical development should be evaluated against paediatric malignancies too.
Abstract The widespread clinical use of the cytostatic doxorubicin together with the induction of chronic cardiomyopathy necessitates the conduct of further pharmacokinetic trials. Novel analytical technologies suitable for point-of-care applications can facilitate drug level analyses but might be prone to interferences from structurally similar compounds. Besides the alcohol metabolite doxorubicinol, aglycone metabolites of doxorubicin might affect its determination in plasma. To evaluate their analytical relevance, a validated HPLC method for the quantification of doxorubicin, doxorubicinol and four aglycones was used. The degradation pattern of doxorubicin in plasma under long-term storage was analysed with respect to the formation of aglycone products. In addition, overall 50 clinical samples obtained within the EPOC-MS-001-Doxo trial were analysed. Substantial degradation of doxorubicin in plasma occurred within a storage period of one year, but this did not lead to the formation of aglycones. In clinical samples, 7-deoxydoxorubicinolone was the major aglycone detectable in 35/50 samples and a concentration range of 1.0–12.7 µg L −1 . If at all, the other aglycones were only determined in very low concentrations. Therefore, analytical interferences from aglycones seem to be unlikely with the exception of 7-deoxydoxorubicinolone whose concentration accounted for up to 65% of the doxorubicin concentration in the clinical samples analysed.
The incidence of hypersensitivity reactions (HSRs) to PEG-asparaginase (PEG-ASNase) was evaluated in 6136 children with ALL enrolled in the AIEOP-BFM ALL 2009 study. Patients with B-cell precursor-acute lymphoblastic leukemia (BCP-ALL) were stratified as standard-risk/medium-risk (MR)/high-risk (HR) and those with T-ALL as non-High/HR. PEG-ASNase was administered intravenously at 2500 IU/sqm/dose. All patients received 2 PEG-ASNase doses in induction; thereafter non-HR versus HR patients received 1 versus 6 PEG-ASNase doses, respectively. After the single regular dose of PEG-ASNase at the beginning of delayed intensification, BCP-ALL-MR patients were randomized to receive 9 additional PEG-ASNase doses every 2 weeks (experimental arm [EA]) versus none (standard arm [SA]); HR patients were randomized to receive, in consolidation, 4 weekly PEG-ASNase doses (EA) versus none (SA). The HSR cumulative incidence (CI) was estimated adjusting for competing risks. An HSR occurred in 472 of 6136 (7.7%) patients. T-non- HR/BCP-Standard-Risk, BCP-MR-SA, BCP-MR-EA, HR-SA and HR-EA patients had 1-year-CI-HSR (±SE) rates of 5.2% (0.5), 5.2% (0.5), 4.0% (0.8), 20.2% (1.2), and 6.4% (1.3), respectively. The randomized intensification of PEG-ASNase did not significantly impact on HSR incidence in BCP-MR patients (1-y-CI-HSR 3.8% [0.8] versus 3.2% [0.6] in MR-EA versus MR-SA; P = 0.55), while impacted significantly in HR patients (1-y-CI-HSR 6.4% [1.3] versus 17.9% [1.8] in HR-EA and HR-SA, respectively; P < 0.001). The CI-HSR was comparable among non-HR groups and was not increased by a substantial intensification of PEG-ASNase in the BCP-MR-EA group whilst it was markedly higher in HR-SA than in HR-EA patients, suggesting that, in such a chemotherapy context, a continuous exposure to PEG-ASNase reduces the risk of developing an HSR.
Since mutations in the mitochondrial genome are associated with hearing loss, we analyzed whether sequence variations of mtDNA are associated with individual sensitivity to cisplatin-induced ototoxicity.The mtDNA of 20 patients with and 19 patients without hearing impairment under therapeutic doses of cisplatin was sequenced for mutations and characterized for haplotype by restriction analysis.Neither the A7445G mutation, nor the 7472insC insertion or the A1555G mutation were identified in any of the patients. Nucleotide variations in the variable D-loop region did not correlate with cisplatin-induced hearing loss. However, these patients clustered more frequently (5 out of 20) in the rare European haplogroup J, than those with normal hearing after therapy (1 out of 19).The linkage of cisplatin-induced hearing impairment to the mitochondrial haplogroup J, which is also associated with the mitochondrially-mediated Leber's Hereditary Optic Neuropathy, might act as a predisponsing genetic background for biochemical differences in mitochondria.