Postpartum depression (PPD) affects up to 20% of childbearing individuals, and a significant limitation in reducing its morbidity is the difficulty in modifying established risk factors. Exposure to synthetic environmental chemicals found in plastics and personal care products, such as phenols, phthalates, and parabens, are potentially modifiable and plausibly linked to PPD and have yet to be explored.
Partial saturation in sands attributable to the presence of gas bubbles (not capillarity) can be encountered naturally in the field because of the decomposition of organic matter, or it can be induced for liquefaction mitigation. An empirical model (RuPSS) was developed to predict the excess pore pressure ratio (ru) in partially saturated sands subjected to earthquake-induced shear strains. The model is based on experimental test results on partially saturated sands. Cyclic simple shear strain tests were performed on specimens prepared and tested in a special liquefaction box. Excess pore pressures were measured for a range of degrees of saturation 40%
Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.
Karst aquifers, capable of storing and transmitting large amount of water, are the main source of drinking water in many regions worldwide. Their excessive permeability leads to an enhanced vulnerability to retain and spread the contamination accordingly. From sustainability perspective, the environmental, economic and social impacts of karst contamination on water resources management are gaining more attention. In this study, an overview of hydrogeological processes and concepts regarding groundwater flow and contaminant transport in karstic systems is presented, followed by a short discussion on surface water and groundwater interaction. Due to the complexity of karstic systems, different approaches have been developed by researchers for investigating and understanding hydrogeological processes and groundwater behavior in karst which are reviewed herein. Additionally, groundwater contamination issues and the most common and effective remediation techniques in karstic terrains are discussed. Lastly, modeling techniques and remote sensing methods, as beneficial and powerful tools for assessing groundwater flow and contaminant transport in karst terrains, are reviewed and evaluated. In each section, relevant research works conducted for Puerto Rico are discussed and some recommendations are presented to complement the ongoing hydrogeological investigations on this island.