Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg 2+ , and, more importantly, a putative third (site C) Mg 2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg 2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor-binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for antibodies. Here, we use NTD-specific probes to capture anti-NTD memory B cells in a longitudinal cohort of infected individuals, some of whom were vaccinated. We found 6 complementation groups of neutralizing antibodies. 58% targeted epitopes outside the NTD supersite, 58% neutralized either Gamma or Omicron, and 14% were broad neutralizers that also neutralized Omicron. Structural characterization revealed that broadly active antibodies targeted three epitopes outside the NTD supersite including a class that recognized both the NTD and SD2 domain. Rapid recruitment of memory B cells producing these antibodies into the plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants, including Omicron.
Purpose: Broadly HIV-1 neutralizing antibodies (bNAbs) can suppress viremia
in humans and represent a novel approach for effective immunotherapy.
However, bNAb monotherapy selects for antibody-resistant viral variants.
Thus, we focused on the identification of new antibody combinations and/or
novel bNAbs that restrict pathways of HIV-1 escape.
Methods: We screened HIV-1 positive patients for their neutralizing
capacities. Following, we performed single cell sorting and PCR of HIV-1
Env-reactive mature B cells of identified elite neutralizers. Found antibodies
were tested for neutralization and binding capacities in vitro. Further, their
antiviral activity was tested in an HIV-1 infected humanized mouse model.
Results: Here we report the isolation of antibody 1–18, a VH1–46-encoded
CD4 binding site (CD4bs) bNAb identified in an individual ranking among the
top 1% neutralizers of 2,274 HIV-1-infected subjects. Tested on a 119-virus
panel, 1–18 showed to be exceptionally broad and potent with a coverage of
97% and a mean IC50 of 0.048 lg/mL, exceeding the activity of most potent
CD4bs bNAbs described to-date. A 2.4 A cryo-EM structure of 1–18 bound to a
native-like Env trimer revealed that it interacts with HIV-1 env similar to other
CD4bs bNAbs, but includes additional contacts to the V3 loop of the adjacent
protomer. Notably, in vitro, 1–18 maintained activity against viruses carrying
mutations associated with escape from VRC01-class bNAbs. Further, its HIV-1
env wide escape profile differed critically from other CD4bs bNAbs. In
humanized mice, monotherapy with 1–18 was sufficient to prevent the
development of viral escape variants that rapidly emerged during treatment
with other CD4bs bNAbs. Finally, 1–18 overcame classical HIV-1 mutations
that are driven by VRC01-like bNAbs in vivo.
Conclusion: 1–18 is a highly potent and broad bNAb that restricts escape and
overcomes frequent CD4bs escape pathways, providing new options for bNAb
combinations to prevent and treat HIV-1 infection.
Abstract Deoxynucleotide triphosphate triphosphyohydrolyases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools by hydrolyzing dNTPs into deoxynucleosides and inorganic triphosphate (PPPi). While the vast majority of these enzymes display broad activity towards canonical dNTPs, exemplified by Sterile Alpha Motif (SAM) and Histidine-aspartate (HD) domain-containing protein 1 (SAMHD1), which blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)- dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric E. coli dGTPase. To obtain these structures, we applied UV-fluorescence microscopy, video analysis and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly-located on fixed target holders, resulting in the highest indexing-rates observed for a serial femtosecond crystallography (SFX) experiment. The structure features a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo form. Moreover, despite no sequence homology, dGTPase and SAMHD1 share similar active site and HD motif architectures; however, dGTPase residues at the end of the substrate-binding pocket mimic Watson Crick interactions providing Guanine base specificity, while a 7 Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures sheds light into the mechanism by which long distance binding (25 Å) of single stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding. Significance Statement dNTPases play a critical role in cellular survival through maintenance of cellular dNTP. While dNTPases display activity towards dNTPs, such as SAMHD1 –which blocks reverse transcription of HIV-1 in macrophages– Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. Here we use novel free electron laser data collection to shed light into the mechanisms of (Ec)-dGTPase selectivity. The structure features a dynamic active site where conformational changes are coupled to dGTP binding. Moreover, despite no sequence homology between (Ec)-dGTPase and SAMHD1, both enzymes share similar active site architectures; however, dGTPase residues at the end of the substrate-binding pocket provide dGTP specificity, while a 7 Å cleft separates SAMHD1 residues from dNTP.
Macromolecular crowding has significant thermodynamic and kinetic consequences for biological macromolecules. Experimental evidence has shown that crowding enhances protein association, increases the rate of folding and refolding, and affects diffusion in the cytoplasm. Statistical thermodynamic models predict that macromolecular crowding increases protein stability, yet quantitative, residue‐level experimental evidence supporting these predictions is largely absent. Here we report the first residue‐specific information about the effects of macromolecular crowding on protein stability. We used NMR‐detected amide proton exchange to quantify the effects of 300 g/L polyvinyl pyrrolidone (PVP, 40 kDa) on the stability of the globular protein chymotrypsin inhibitor 2. Crowding increases the equilibrium constant for folding by up to 100‐fold compared to dilute solution and the model of the PVP monomer. We also show that, consistent with the local unfolding model, the magnitude of the increase depends on the location of the residue in the structure. Our results demonstrate that the increase in stability upon addition of PVP is the result of macromolecular crowding.
ABSTRACT The ubiquitous skin colonist Staphylococcus epidermidis elicits a CD8 + T cell response pre-emptively, in the absence of an infection 1 . However, the scope and purpose of this anti-commensal immune program are not well defined, limiting our ability to harness it therapeutically. Here, we show that this colonist also induces a potent, durable, and specific antibody response that is conserved in humans and non-human primates. A series of S. epidermidis cell-wall mutants revealed that the cell surface protein Aap is a predominant target. By colonizing mice with a strain of S. epidermidis in which the parallel β-helix domain of Aap is replaced by tetanus toxin fragment C, we elicit a potent neutralizing antibody response that protects mice against a lethal challenge. A similar strain of S. epidermidis expressing an Aap-SpyCatcher chimera can be conjugated with recombinant immunogens; the resulting labeled commensal elicits high titers of antibody under conditions of physiologic colonization, including a robust IgA response in the nasal mucosa. Thus, immunity to a common skin colonist involves a coordinated T and B cell response, the latter of which can be redirected against pathogens as a novel form of topical vaccination.
Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles with four to eight distinct RBDs). Mice immunized with RBD nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic RBD nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs relative to sera from immunizations with homotypic SARS-CoV-2-RBD nanoparticles or COVID-19 convalescent human plasmas. Moreover, after priming, sera from mosaic RBD-immunized mice neutralized heterologous pseudotyped coronaviruses as well as or better than sera from homotypic SARS-CoV-2-RBD nanoparticle immunizations, demonstrating no loss of immunogenicity against particular RBDs resulting from co-display. A single immunization with mosaic RBD nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.
Summary Neutralizing antibody responses to coronaviruses focus on the trimeric spike, with most against the receptor-binding domain (RBD). Here we characterized polyclonal IgGs and Fabs from COVID-19 convalescent individuals for recognition of coronavirus spikes. Plasma IgGs differed in their degree of focus on RBD epitopes, recognition of SARS-CoV, MERS-CoV, and mild coronaviruses, and how avidity effects contributed to increased binding/neutralization of IgGs over Fabs. Electron microscopy reconstructions of polyclonal plasma Fab-spike complexes showed recognition of both S1 A and RBD epitopes. A 3.4Å cryo-EM structure of a neutralizing monoclonal Fab-S complex revealed an epitope that blocks ACE2 receptor-binding on “up” RBDs. Modeling suggested that IgGs targeting these sites have different potentials for inter-spike crosslinking on viruses and would not be greatly affected by identified SARS-CoV-2 spike mutations. These studies structurally define a recurrent anti-SARS-CoV-2 antibody class derived from VH3-53/VH3-66 and similarity to a SARS-CoV VH3-30 antibody, providing criteria for evaluating vaccine-elicited antibodies.