Combined therapy with penicillins and aminoglycosides has been proved beneficial to address many persistent bacterial infections with possible synergistic effects. However, the different pharmacokinetic profiles of these two antibiotic classes may not guarantee a concerted spatio-temporal delivery at the site of action, decreasing the efficacy of this combination and promoting resistance. Herein, we propose a multifunctional antibiotic-polymer conjugate, designed to colocalize ampicillin and gentamicin to tackle persistent biofilm infections. The two antibacterial molecules were grafted along with the amino acid l-arginine to a biocompatible polymer backbone with peptidomimetic hydrophilic structure, obtaining the antimicrobial poly(argilylaspartamide-co-aspartic) acid-ampicillin, gentamicin (PAA-AG) conjugate. The PAA-AG conjugate displayed excellent biocompatibility on human cell lines if compared with free drugs, potentially enlarging their therapeutic window and safety, and suitable mucoadhesive characteristics which may help local treatments of mucosal infections. Studies on planktonic cultures of clinical and reference strains of S. aureus, P. aeruginosa, and E. coli revealed that PAA-AG holds a broad-spectrum antibacterial efficacy, revealing high potency in inhibiting the growth of the tested strains. More interestingly, PAA-AG exhibited excellent antibiofilm activity on both Gram+ and Gram- communities, showing inhibition of their formation at subMIC concentrations as well as inducing the regression of mature biofilms. Given the high biocompatibility and broad antibiofilm efficacy, combined with the opportunity for synchronous co-delivery, the PAA-AG conjugate could be a valuable tool to increase the success of ampicillin/gentamicin-based antibiotic multitherapy.
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
HBDI-like chromophores represent a novel set of biomimetic switches mimicking the fluorophore of the green fluorescent protein that are currently studied with the hope to expand the molecular switch/motor toolbox. However, until now members capable of absorbing visible light in their neutral (i. e. non-anionic) form have not been reported. In this contribution we report the preparation of an HBDI-like chromophore based on a 3-phenylbenzofulvene scaffold capable of absorbing blue light and photoisomerizing on the picosecond timescale. More specifically, we show that double-bond photoisomerization occurs in both the E-to-Z and Z-to-E directions and that these can be controlled by irradiating with blue and UV light, respectively. Finally, as a preliminary applicative result, we report the incorporation of the chromophore in an amphiphilic molecule and demonstrate the formation of a visible-light-sensitive nanoaggregated state in water.
Abstract A coating technology based on low molecular weight hyaluronic acid (HA) and ferulic acid (FA) was applied to the coating of low generation poly(propylene imine) dendrimers through a biocompatible hexa(ethylene glycol) spacer. The ensuing HA‐FA‐HEG‐PPID dendrimeric materials showed interesting loading capability (between 7.65% and 9.08%) regarding anticancer agent doxorubicin, and their interactions with the drug appeared to hamper the drug release in the physiological environment. Thus, the stable nanostructured loaded delivery systems were able to internalize into cells expressing the HA receptor CD44 and to demonstrate high cytotoxicity comparable to that shown by equivalent amounts of free doxorubicin. Thus, HA‐FA‐HEG‐PPID dendrimeric materials were proposed as biocompatible drug carriers capable of transporting anticancer doxorubicin to tumor cells.
In this paper, we propose a rational design of a hybrid nanosystem capable of locally delivering a high amount of hydrophobic anticancer drugs (sorafenib or lenvatinib) and heat (hyperthermia) in a remote-controlled manner. We combined in a unique nanosystem the excellent NIR photothermal conversion of gold nanorods (AuNRs) with the ability of a specially designed galactosylated amphiphilic graft copolymer (PHEA-g-BIB-pButMA-g-PEG-GAL) able to recognize hepatic cells overexpressing the asialoglycoprotein receptor (ASGPR) on their membranes, thus giving rise to a smart composite nanosystem for the NIR-triggered chemo-phototherapy of hepatocarcinoma. In order to allow the internalization of AuNRs in the hydrophobic core of polymeric nanoparticles, AuNRs were coated with a thiolated fatty acid (12-mercaptododecanoic acid). The drug-loaded hybrid nanoparticles were prepared by the nanoprecipitation method, obtaining nanoparticles of about 200 nm and drug loadings of 9.0 and 5.4% w/w for sorafenib and lenvatinib, respectively. These multifunctional nanosystems have shown to convert NIR radiation into heat and release charged drugs in a remote-controlled manner. Then, the biocompatibility and synergistic effects of a chemo-phototherapy combination, as well the receptor-mediated internalization, were evaluated by an in vitro test on HepG2, HuH7, and NHDF. The results indicate that the proposed nanoparticles can be considered to be virtuous candidates for an efficient and selective dual-mode therapy of hepatocarcinoma.