Abstract. Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.
Hurricanes Irene and Sandy had a significant impact on New York City; the result was devastating damage to the New York City transportation systems, which took days, even months to recover. This study explored posthurricane recovery patterns of the roadway and subway systems of New York City on the basis of data for taxi trips and for subway turnstile ridership. Both data sets were examples of big data with millions of individual ridership records per month. The spatiotemporal variations of transportation system recovery behavior were investigated by using neighborhood tabulation areas as units of analysis. Recovery curves were estimated for each evacuation zone category to model time-dependent recovery patterns of the roadway and subway systems. The recovery rate for Hurricane Sandy was found to be lower than that for Hurricane Irene. In addition, the results indicate a higher resilience of the road network compared with the subway network. The methodology proposed in this study can be used to evaluate t...
In network system, network coding allows intermediate nodes to encode the received messages before forwarding them, thus network coding is vulnerable to pollution attacks.Besides, the attacks are amplified by the network coding process with the result that the whole network maybe pollutes.In this paper, we proposed a novel unconditionally secure authentication code for multi-source network coding, which is robust against pollution attacks.For the authentication scheme based on theoretic strength, it is robust against those attackers that have unlimited computational resources, and the intermediate nodes therein can verify the integrity and origin of the encoded messages received without having to decode them, and the receiver nodes can check them out and discard the messages that fail the verification.By this way, the pollution is canceled out before reaching the destinations.
Abstract Enterovirus 71 (EV71) is the main causative agent of hand, foot and mouth disease (HFMD), which induces significantly elevated levels of cytokines and chemokines, leading to local or system inflammation and severe complications, whereas the underlying regulatory mechanisms and the inflammatory pathogenesis remain elusive. ARRDC4 is one member of arrestins family, having important roles in glucose metabolism and G-protein-coupled receptors (GPCRs) related physiological and pathological processes, however, the function of ARRDC4 in innate immune system is largely unknown. Here we identified that ARRDC4 expression was increased after EV71 infection in THP-1-derived macrophages and verified in EV71-infected HFMD patients and the healthy candidates. The expression level of ARRDC4 was positively correlated with the serum concentration of IL-6, TNF- α and CCL3 in clinical specimens. ARRDC4 interacted with MDA5 via the arrestin-like N domain, and further recruited TRIM65 to enhance the K63 ubiquitination of MDA5, resulting in activation of the downstream innate signaling pathway and transcription of proinflammatory cytokines during EV71 infection. Our data highlight new function of ARRDC4 in innate immunity, contributing to the better understanding about regulation of MDA5 activation after EV71 infection, and also suggest ARRDC4 may serve as a potential target for intervention of EV71-induced inflammatory response.
Safety service patrols (SSPs) play an important role in incident management on highways. It is critical to respond to incidents in a timely manner as this can significantly reduce nonrecurrent congestion and improve safety. Therefore, it is essential to allocate available SSP vehicles to highway segments such that their effectiveness is maximized. This study aimed to develop a simulation-based framework to assist with SSP service optimization. More specifically, a discrete event-based simulation tool (i.e., SSP-OPT) with customizable parameters was developed to help plan the optimum patrol routes based on available SSP resources and predicted incidents. The developed tool was tested with roadway traffic and incident data from the Virginia highway network. After model calibration, the simulation results showed that the developed SSP-OPT tool could replicate the patrol routes with similar performance to the field observations, validating the tool. Further, adopting the tool for corridor-level optimization could help to identify the best patrol plan to minimize SSP response time and maximize SSP response rates for a given number of SSP vehicles. The SSP-OPT tool requires minimal user input (e.g., segment lengths, annual average daily traffic) and has the flexibility to be easily applied to any highway corridor once calibrated. The tool generates various performance metrics to enable more informed decision making in SSP route planning.
Abstract In our previous studies, we found that plague vaccines can induce long‐term antibody response, but no significant antibody boost was observed when the immunized mice were challenged with virulent Yersinia pestis . However, a booster vaccination of subunit vaccine on week 3 after primary immunization elicited a significantly higher antibody titre than a single dose, whereas no significant antibody titre difference was observed between a single dose and two doses of EV 76 vaccination. To address these issues, in this study, we first investigated the kinetics of memory B cells and plasma cells in the mice immunized with EV 76 or F1 protein by flow cytometry and then determined antibody titre in five groups of mice immunized with various vaccination strategy. The results showed that memory B cells dropped to a low level at day 56 after primary immunization. In contrast, plasma cells were maintained for more than 98 days. The group with primary immunization of EV 76 and booster of F1 antigen developed a higher antibody titre than the group with immunization of F1 antigen and booster of EV 76. This result supports a hypothesis that an excess of antigens can neutralize pre‐existing antibodies, and then the redundant antigen induces antibody boost. Taken together, a boost of antibody titre after revaccination may be dependent on the existence of memory B cells and an excess of antigen vaccination. In addition, this study showed an ideal immunization strategy that involves first immunization with a live attenuated vaccine, such as EV 76, and then with a subunit vaccine.