Abstract Cardiovascular therapeutic devices (CTDs) remain limited by thrombotic adverse events. Current antithrombotic agents limit thrombosis partially, often adding to bleeding. The Impella® blood pump utilizes heparin in 5% dextrose (D5W) as an internal purge to limit thrombosis. While effective, exogenous heparin often complicates overall anticoagulation management, increasing bleeding tendency. Recent clinical studies suggest sodium bicarbonate (bicarb) may be an effective alternative to heparin for local anti-thrombosis. We examined the effect of sodium bicarbonate on human platelet morphology and function to better understand its translational utility. Human platelets were incubated (60:40) with D5W + 25 mEq/L, 50 mEq/L, or 100 mEq/L sodium bicarbonate versus D5W or D5W + Heparin 50 U/mL as controls. pH of platelet-bicarbonate solutions mixtures was measured. Platelet morphology was examined via transmission electron microscopy; activation assessed via P-selectin expression, phosphatidylserine exposure and thrombin generation; and aggregation with TRAP-6, calcium ionophore, ADP and collagen quantified; adhesion to glass measured via fluorescence microscopy. Sodium bicarbonate did not alter platelet morphology but did significantly inhibit activation, aggregation, and adhesion. Phosphatidylserine exposure and thrombin generation were both reduced in a concentration-dependent manner—between 26.6 ± 8.2% (p = 0.01) and 70.7 ± 5.6% (p < 0.0001); and 14.0 ± 6.2% (p = 0.15) and 41.7 ± 6.8% (p = 0.03), respectively, compared to D5W control. Platelet aggregation via all agonists was also reduced, particularly at higher concentrations of bicarb. Platelet adhesion to glass was similarly reduced, between 0.04 ± 0.03% (p = 0.61) and 0.11 ± 0.04% (p = 0.05). Sodium bicarbonate has direct, local, dose-dependent effects limiting platelet activation and adhesion. Our results highlight the potential utility of sodium bicarbonate as a locally acting agent to limit device thrombosis.
The dipyrrin-1,9-dione framework, which is characteristic of the propentdyopent pigments deriving from heme metabolism, coordinates metal ions as monoanionic bidentate donors. The resulting analogs of dipyrrinato complexes undergo reversible ligand-based reductions, thus showcasing the ability of the dipyrrindione scaffold to act as an electron reservoir. Herein we report the synthesis and characterization of three heteroleptic palladium complexes of the redox-active dipyrrindione ligand. Primary amines were chosen as additional ligands so as to assemble complexes of planar geometries with complementary interligand hydrogen-bonding. Full chemical characterization confirms the hydrogen bonding interactions between the primary amine ligands and the acceptor carbonyl groups on the dipyrrolic ligand. The resulting heteroleptic compounds display reversible one-electron reduction events that are centered on the dipyrrindione ligand as revealed by voltammetry and spectroelectrochemistry data. Within these planar Pd(II) complexes, the propentdyopent motif therefore combines reversible ligand-based redox chemistry with interligand hydrogen bonding in the primary coordination sphere of the metal center.
Iron is an essential element for virtually all organisms. On the one hand, it facilitates cell proliferation and growth. On the other hand, iron may be detrimental due to its redox abilities, thereby contributing to free radical formation, which in turn may provoke oxidative stress and DNA damage. Iron also plays a crucial role in tumor progression and metastasis due to its major function in tumor cell survival and reprogramming of the tumor microenvironment. Therefore, pathways of iron acquisition, export, and storage are often perturbed in cancers, suggesting that targeting iron metabolic pathways might represent opportunities towards innovative approaches in cancer treatment. Recent evidence points to a crucial role of tumor-associated macrophages (TAMs) as a source of iron within the tumor microenvironment, implying that specifically targeting the TAM iron pool might add to the efficacy of tumor therapy. Here, we provide a brief summary of tumor cell iron metabolism and updated molecular mechanisms that regulate cellular and systemic iron homeostasis with regard to the development of cancer. Since iron adds to shaping major hallmarks of cancer, we emphasize innovative therapeutic strategies to address the iron pool of tumor cells or cells of the tumor microenvironment for the treatment of cancer.
Accumulating evidence suggests that iron homeostasis is disturbed in tumors. We aimed at clarifying the distribution of iron in renal cell carcinoma (RCC). Considering the pivotal role of macrophages for iron homeostasis and their association with poor clinical outcome, we investigated the role of macrophage-secreted iron for tumor progression by applying a novel chelation approach. We applied flow cytometry and multiplex-immunohistochemistry to detect iron-dependent markers and analyzed iron distribution with atomic absorption spectrometry in patients diagnosed with RCC. We further analyzed the functional significance of iron by applying a novel extracellular chelator using RCC cell lines as well as patient-derived primary cells. The expression of iron-regulated genes was significantly elevated in tumors compared to adjacent healthy tissue. Iron retention was detected in tumor cells, whereas tumor-associated macrophages showed an iron-release phenotype accompanied by enhanced expression of ferroportin. We found increased iron amounts in extracellular fluids, which in turn stimulated tumor cell proliferation and migration. In vitro, macrophage-derived iron showed pro-tumor functions, whereas application of an extracellular chelator blocked these effects. Our study provides new insights in iron distribution and iron-handling in RCC. Chelators that specifically scavenge iron in the extracellular space confirmed the importance of macrophage-secreted iron in promoting tumor growth.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Efforts directed at curtailing the bioavailability of intracellular iron could lead to the development of broad-spectrum anticancer drugs given the metal's role in cancer proliferation and metastasis. Human ribonucleotide reductase (RNR), the key enzyme responsible for synthesizing the building blocks of DNA replication and repair, depends on Fe binding at its R2 subunit to activate the catalytic R1 subunit. This work explores an intracellular iron chelator transmetalative approach to inhibit RNR using the titanium(IV) chemical transferrin mimetic (cTfm) compounds Ti(HBED) and Ti(Deferasirox)2. Whole-cell EPR studies reveal that the compounds can effectively attenuate RNR activity though seemingly causing different changes to the labile iron pool that may account for differences in their potency against cells. Studies of Ti(IV) interactions with the adenosine nucleotide family at pH 7.4 reveal strong metal binding and extensive phosphate hydrolysis, which suggest the capacity of the metal to disturb the nucleotide substrate pool of the RNR enzyme. By decreasing intracellular Fe bioavailability and altering the nucleotide substrate pool, the Ti cTfm compounds could inhibit the activity of the R1 and R2 subunits of RNR. The compounds arrest the cell cycle in the S phase, indicating suppressed DNA replication, and induce apoptotic cell death. Cotreatment cell viability studies with cisplatin and Ti(Deferasirox)2 reveal a promising synergism between the compounds that is likely owed to their distinct but complementary effect on DNA replication.
The coordination chemistry of the Schiff base polypyrrolic octaaza macrocycle 1 toward late first-row transition metals was investigated. Binuclear complexes with the divalent cations Ni(II), Cu(II), and Zn(II) and with the monovalent cation Cu(I) were prepared and characterized. Air oxidation of the Cu(I) ions in the latter complex to their divalent oxidation state resulted in a change in the coordination mode relative to the macrocycle.
Histone deacetylases regulate the acetylation levels of numerous proteins and play key roles in physiological processes and disease states. In addition to acetyl groups, deacetylases can remove other acyl modifications on lysines, the roles and regulation of which are far less understood. A peptide-based fluorescent probe for single-reagent, real-time detection of deacetylase activity that can be readily adapted for probing broader lysine deacylation, including decrotonylation, is reported. Following cleavage of the lysine modification, the probe undergoes rapid intramolecular imine formation that results in marked optical changes, thus enabling convenient detection of deacylase activity with good statistical Z' factors for both absorption and fluorescence modalities. The peptide-based design offers broader isozyme scope than that of small-molecule analogues, and is suitable for probing both metal- and nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. With an effective sirtuin activity assay in hand, it is demonstrated that iron chelation by Sirtinol, a commonly employed sirtuin inhibitor, results in an enhancement in the inhibitory activity of the compound that may affect its performance in vivo.
Abstract The central role of iron in tumor progression and metastasis motivates the development of iron‐binding approaches in cancer chemotherapy. Disulfide‐based prochelators are reductively activated upon cellular uptake to liberate thiol chelators responsible for iron sequestration. Herein, a trimethyl thiosemicarbazone moiety and the imidazole‐2‐thione heterocycle are incorporated in this prochelator design. Iron binding of the corresponding tridentate chelators leads to the stabilization of a low‐spin ferric center in 2 : 1 ligand‐to‐metal complexes. Native mass spectrometry experiments show that the prochelators form stable disulfide conjugates with bovine serum albumin, thus affording novel bioconjugate prochelator systems. Antiproliferative activities at sub‐micromolar levels are recorded in a panel of breast, ovarian and colorectal cancer cells, along with significantly lower activity in normal fibroblasts.