To the Editor, With great interest we have read the recent article by Dahlstrand Rudin and colleagues addressing CD177+ and CD177− neutrophilic granulocyte subset accumulation in human periodontitis.1 We would like to discuss a possible additional explanation of these findings beyond differential recruitment. The flow cytometric histogram in figure 2E appears to depict an upward shift in the CD177-mean fluorescence intensity (MFI) of the CD177 negative population. This is somewhat reminiscent of an earlier report of enhanced neutrophil CD177 expression in sternal wounds after cardiac surgery.2 An elevated CD177-MFI on the negative subpopulation could point at transfer of CD177 from cell to cell. Transfer of a large range of functional proteins has been described in the form of extracellular vesicles as well as smaller membrane particles.3,4 We would therefore like to ask the authors for systematic analysis of the CD177 MFI in the negative populations, both in vivo and after the in vitro migration assays. This first step to address this hypothesis could in future studies be complemented by confocal microscopy to discern granulocytes with CD177 exclusively on the surface from cells that also contain CD177 in their preformed intracellular granules.
Supplemental Tables and Figures for the clinical research article: A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children
Supplemental Tables and Figures for the clinical research article: A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children
Supplemental Tables and Figures for the clinical research article: A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children
Supplemental Tables and Figures for the clinical research article: A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children
Monocytes are central for atherosclerotic vascular inflammation. The human non-classical, patrolling subtype, which expresses high levels of CD16 and fractalkine receptor CX3CR1, strongly associates with cardiovascular events. This is most marked in renal failure, a condition with excess atherosclerosis morbidity. The underlying mechanism is not understood. This study investigated how human CD16+ monocytes modulate endothelial cell function.
Summary Kidney injury significantly increases overall mortality. Neutrophilic granulocytes (neutrophils) are the most abundant human blood leukocytes. They are characterized by a high turnover rate, chiefly controlled by granulocyte colony stimulating factor (G-CSF). The role of kidney injury and uremia in regulation of granulopoiesis has not been reported. Kidney transplantation, which inherently causes ischemia–reperfusion injury of the graft, elevated human neutrophil expression of the surface glycoprotein CD177. CD177 is among the most G-CSF-responsive neutrophil genes and reversibly increased on neutrophils of healthy donors who received recombinant G-CSF. In kidney graft recipients, a transient rise in neutrophil CD177 correlated with renal tubular epithelial G-CSF expression. In contrast, CD177 was unaltered in patients with chronic renal impairment and independent of renal replacement therapy. Under controlled conditions of experimental ischemia–reperfusion and unilateral ureteral obstruction injuries in mice, renal G-CSF mRNA and protein expression significantly increased and systemic neutrophilia developed. Human renal tubular epithelial cell G-CSF expression was promoted by hypoxia and proinflammatory cytokine interleukin 17A in vitro. Clinically, recipients of ABO blood group-incompatible kidney grafts developed a larger rise in neutrophil CD177. Their grafts are characterized by complement C4d deposition on the renal endothelium, even in the absence of rejection. Indeed, complement activation, but not hypoxia, induced primary human endothelial cell G-CSF expression. Our data demonstrate that kidney injury induces renal G-CSF expression and modulates granulopoiesis. They delineate differential G-CSF regulation in renal epithelium and endothelium. Altered granulopoiesis may contribute to the systemic impact of kidney injury.
Abstract Context IGF1 receptor mutations (IGF1RM) are rare; however, patients exhibit pronounced growth retardation without catch-up. Although several case reports exist, a comprehensive statistical analysis investigating growth profile and benefit of recombinant human growth hormone (rhGH) treatment is still missing. Objective and methods Here, we compared IGF1RM carriers (n = 23) retrospectively regarding birth parameters, growth response to rhGH therapy, near final height, and glucose/insulin homeostasis to treated children born small for gestational age (SGA) (n = 34). Additionally, health profiles of adult IGF1RM carriers were surveyed by a questionnaire. Results IGF1RM carriers were significantly smaller at rhGH initiation and had a diminished first-year response compared to SGA children (Δ height standard deviation score: 0.29 vs. 0.65), resulting in a lower growth response under therapy. Interestingly, the number of poor therapy responders was three times higher for IGF1RM carriers than for SGA patients (53 % vs. 17 %). However, most IGF1RM good responders showed catch-up growth to the levels of SGA patients. Moreover, we observed no differences in homeostasis model assessment of insulin resistance before treatment, but during treatment insulin resistance was significantly increased in IGF1RM carriers compared to SGA children. Analyses in adult mutation carriers indicated no increased occurrence of comorbidities later in life compared to SGA controls. Conclusion In summary, IGF1RM carriers showed a more pronounced growth retardation and lower response to rhGH therapy compared to non-mutation carriers, with high individual variability. Therefore, a critical reevaluation of success should be performed periodically. In adulthood, we could not observe a significant influence of IGF1RM on metabolism and health of carriers.
Proangiogenic effects of mobilized bone marrow-derived stem/progenitor cells are essential for cardiac repair after myocardial infarction. MicroRNAs (miRNA/miR) are key regulators of angiogenesis. We investigated the differential regulation of angio-miRs, that is, miRNAs regulating neovascularization, in mobilized CD34+ progenitor cells obtained from patients with an acute ST-segment-elevation myocardial infarction (STEMI) as compared with those with stable coronary artery disease or healthy subjects.CD34+ progenitor cells were isolated from patients with STEMI (on day 0 and day 5), stable coronary artery disease, and healthy subjects (n=27). CD34+ progenitor cells of patients with STEMI exhibited increased proangiogenic activity as compared with CD34+ cells from the other groups. Using a polymerase chain reaction-based miRNA-array and real-time polymerase chain reaction validation, we identified a profound upregulation of 2 known angio-miRs, that are, miR-378 and let-7b, in CD34+ cells of patients with STEMI. Especially, we demonstrate that miR-378 is a critical regulator of the proangiogenic capacity of CD34+ progenitor cells and its stimulatory effects on endothelial cells in vitro and in vivo, whereas let-7b upregulation in CD34+ cells failed to proof its effect on endothelial cells in vivo.The present study demonstrates a significant upregulation of the angio-miRs miR-378 and let-7b in mobilized CD34+ progenitor cells of patients with STEMI. The increased proangiogenic activity of these cells in patients with STEMI and the observation that in particular miR-378 regulates the angiogenic capacity of CD34+ progenitor cells in vivo suggest that this unique miRNA expression pattern represents a novel endogenous repair mechanism activated in acute myocardial infarction.