Given declines in biodiversity and ecosystem services, funding to support conservation must be invested effectively. However, funds for conservation often come with geographic restrictions on where they can be spent. We introduce a method to demonstrate to supporters of conservation how much more could be achieved if they were to allow greater flexibility over conservation funding. Specifically, we calculated conservation exchange rates that summarized gains in conservation outcomes available if funding originating in one location could be invested elsewhere. We illustrate our approach by considering nongovernmental organization funding and major federal programs within the US and a range of conservation objectives focused on biodiversity and ecosystem services. We show that large improvements in biodiversity and ecosystem service provision are available if geographic constraints on conservation funding were loosened. Finally, we demonstrate how conservation exchange rates can be used to spotlight promising opportunities for relaxing geographic funding restrictions.
Finding ways to increase financial support is critical to conservation efforts. We used conservation fundraising data, unprecedented in their resolution, to reveal spatial patterns in philanthropic giving to a major land protection organization in the United States. We also quantified the relationship between the amount of effort devoted to fundraising and donations received. Around 40% of the variation in the propensity to give and overall value of gifts was explained by sociodemographic and other predictors. For example, education level had greater predictive capacity than income, political views, and other factors often considered important. Fundraising effort was strongly predictive of the amount donated in an area. Our model estimated a doubling of funds raised with a 5-fold increase of effort. Conservation organizations could use our statistical framework to inform efforts aimed at increasing philanthropic giving by identifying locations with large model residuals. An example application of our framework showed an almost 40% increase (US$200 million) in fundraising revenue for the case-study conservation organization.
Abstract Societies worldwide make large investments in the sustainability of integrated human-freshwater systems, but uncertainty about water supplies under climate change poses a major challenge. Investments in infrastructure, water regulation, or payments for ecosystem services may boost water availability, but may also yield poor returns on investment if directed to locations where water supply unexpectedly fluctuates due to shifting climate. How should investments in water sustainability be allocated across space and among different types of projects? Given the high costs of investments in water sustainability, decision-makers are typically risk-intolerant, and considerable uncertainty about future climate conditions can lead to decision paralysis. Here, we use mathematical optimization models to find Pareto-optimal satisfaction of human and environmental water needs across a large drought-prone river basin for a range of downscaled climate projections. We show how water scarcity and future uncertainty vary independently by location, and that joint consideration of both factors can provide guidance on how to allocate water sustainability investments. Locations with high water scarcity and low uncertainty are good candidates for high-cost, high-reward investments; locations with high scarcity but also high uncertainty may benefit most from low regret investments that minimize the potential for stranded assets if water supply increases. Given uncertainty in climate projections in many regions worldwide, our analysis illustrates how explicit consideration of uncertainty may help to identify the most effective strategies for investments in the long-term sustainability of integrated human-freshwater systems.
Abstract Climate change is expected to alter the distributions of species around the world, but estimates of species’ outcomes vary widely among competing climate scenarios. Where should conservation resources be directed to maximize expected conservation benefits given future climate uncertainty? Here, we explore this question by quantifying variation in fish species’ distributions across future climate scenarios in the Red River basin south‐central United States. We modeled historical and future stream fish distributions using a suite of environmental covariates derived from high‐resolution hydrologic and climatic modeling of the basin. We quantified variation in outcomes for individual species across climate scenarios and across space, and identified hotspots of species loss by summing changes in probability of occurrence across species. Under all climate scenarios, we find that the distribution of most fish species in the Red River Basin will contract by 2050. However, the variability across climate scenarios was more than 10 times higher for some species than for others. Despite this uncertainty in outcomes for individual species, hotspots of species loss tended to occur in the same portions of the basin across all climate scenarios. We also find that the most common species are projected to experience the greatest range contractions, underscoring the need for directing conservation resources toward both common and rare species. Our results suggest that while it may be difficult to predict which species will be most impacted by climate change, it may nevertheless be possible to identify spatial priorities for climate mitigation actions that are robust to future climate uncertainty. These findings are likely to be generalizable to other ecosystems around the world where future climate conditions follow prevailing historical patterns of key environmental covariates.
Mercury has contaminated rivers worldwide, with health consequences for aquatic organisms and humans who consume them. Researchers have focused on aquatic birds as sentinels for mercury. However, trophic transfer between adjacent ecosystems could lead to the export of aquatic mercury to terrestrial habitats. Along a mercury-contaminated river in Virginia, United States, terrestrial birds had significantly elevated levels of mercury in their blood, similar to their aquatic-feeding counterparts. Diet analysis revealed that spiders delivered much of the dietary mercury. We conclude that aquatic mercury pollution can move into terrestrial habitats, where it biomagnifies to levels in songbirds that may cause adverse effects. Rivers contaminated with mercury may pose a threat to the many bird species that feed on predatory invertebrates in adjacent riparian habitats.