In anticipation of the new era of high-redshift exploration marked by the commissioning of the James Webb Space Telescope (JWST), we present two sets of galaxy catalogues that are designed to aid the planning and interpretation of observing programs. We provide a set of 40 wide-field lightcones with footprints spanning approximately ~ 1,000 sq. arcmin, containing galaxies up to z = 10, and a new set of 8 ultra-deep lightcones with 132 sq. arcmin footprints, containing galaxies up to z ~ 12 down to the magnitudes expected to be reached in the deepest JWST surveys. These mock lightcones are extracted from dissipationless N-body simulations and populated with galaxies using the well-established, computationally efficient Santa Cruz semi-analytic model for galaxy formation. We provide a wide range of predicted physical properties, and simulated photometry from NIRCam and many other instruments. We explore the predicted counts and luminosity functions and angular two-point correlation functions for galaxies in these simulated lightcones. We also explore the predicted field-to-field variance using multiple lightcone realizations. We find that these lightcones reproduce the available measurements of observed clustering from 0.2 < z < 7.5 very well. We provide predictions for galaxy clustering at high redshift that may be obtained from future JWST observations. All of the lightcones presented here are made available through a web-based, interactive data release portal.
We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution (GCE) model and can now predict abundances of individual elements for the galaxies in the semi-analytic simulations. This is the first time a SAM with feedback from Active Galactic Nuclei (AGN) has included a chemical evolution prescription that relaxes the instantaneous recycling approximation. We find that the new models are able to reproduce the observed mass-metallicity (M*-[Z/H]) relation and, for the first time in a SAM, we reproduce the observed positive slope of the mass-abundance ratio (M*-[$alpha$/Fe]) relation. Our results indicate that in order to simultaneously match these observations of early-type galaxies, the use of both a very mildly top-heavy IMF (i.e., with a slope of x=1.15 as opposed to a standard x=1.3), and a lower fraction of binaries that explode as Type Ia supernovae appears to be required. We also examine the rate of supernova explosions in the simulated galaxies. In early-type (non-star forming) galaxies, our predictions are also consistent with the observed SNe rates. However, in star-forming galaxies, a higher fraction of SN Ia binaries than in our preferred model is required to match the data. If, however, we deviate from the classical model and introduce a population of SNe Ia with very short delay times, our models simultaneously produce a good match to the observed metallicities, abundance ratios and SN rates.
We have used the 28'x 28' HST image mosaic from the GEMS (Galaxy Evolution from Morphology and SEDs) survey in conjunction with the COMBO-17 photometric redshift survey to constrain the incidence of major mergers between spheroid-dominated galaxies with little cold gas (dry mergers) since z = 0.7. A set of N-body merger simulations was used to explore the morphological signatures of such interactions: they are recognizable either as < 5kpc separation close pairs or because of broad, low surface brightness tidal features and asymmetries. Data with the depth and resolution of GEMS are sensitive to dry mergers between galaxies with M_V < -20.5 for z < 0.7; dry mergers at higher redshifts are not easily recovered in single-orbit HST imaging. Six dry mergers (12 galaxies) with luminosity ratios between 1:1 and 4:1 were found from a sample of 379 red early-type galaxies with M_V < -20.5 and 0.1 < z < 0.7. The simulations suggest that the morphological signatures of dry merging are visible for ~250Myr and we use this timescale to convert the observed merger incidence into a rate. On this basis we find that present day spheroidal galaxies with M_V < -20.5 on average have undergone between 0.5 and 2 major dry mergers since z ~ 0.7. We have compared this result with the predictions of a Cold Dark Matter based semi-analytic galaxy formation model. The model reproduces the observed declining major merger fraction of bright galaxies and the space density of luminous early-type galaxies reasonably well. The predicted dry merger fraction is consistent with our observational result. Hence, hierarchical models predict and observations now show that major dry mergers are an important driver of the evolution of massive early-type galaxies in recent epochs.
Cold Dark Matter theory predicts that the Local Group should contain many more dwarf-sized objects than the observed number of dwarf galaxies --- the so-called sub-structure problem. We investigate whether the suppression of star formation in these small objects due to the presence of a photoionizing background can resolve the problem. We make use of results from recent hydrodynamic simulations to build a recipe for the suppression of gas infall into semi-analytic galaxy formation models, and use these to predict the luminosity function of dwarf galaxies in the Local Group. In the models without photoionization ``squelching'', we predict a large excess of faint dwarf galaxies compared with the observed number in the Local Group --- thus, the usual recipe for supernovae feedback used in semi-analytic models does not solve the sub-structure problem on its own. When we include photoionization squelching, we find good agreement with the observations. We have neglected tidal destruction, which probably further reduces the number of dwarf galaxies. We conclude that photoionizing squelching easily solves the sub-structure problem. In fact, it is likely that once this effect is taken into account, models with reduced small-scale power (e.g. Warm Dark Matter) would underproduce dwarf galaxies.
We perform a comprehensive estimate of the frequency of galaxy mergers and their impact on star formation over z~0.24--0.80 (lookback time T_b~3--7 Gyr) using 3698 (M*>=1e9 Msun) galaxies with GEMS HST, COMBO-17, and Spitzer data. Our results are: (1) Among 790 high mass (M*>=2.5e10 Msun) galaxies, the visually-based merger fraction over z~0.24--0.80, ranges from 9%+-5% to 8%+-2%. Lower limits on the major and minor merger fractions over this interval range from 1.1% to 3.5%, and 3.6% to 7.5%, respectively. This is the first approximate empirical estimate of the frequency of minor mergers at z<1. For a visibility timescale of ~0.5 Gyr, it follows that over T_b~3--7 Gyr, ~68% of high mass systems have undergone a merger of mass ratio >1/10, with ~16%, 45%, and 7% of these corresponding respectively to major, minor, and ambiguous `major or minor' mergers. The mean merger rate is a few x 1e-4 Gyr-1 Mpc-3. (2) We compare the empirical merger fraction and rate for high mass galaxies to a suite of Lambda CDM-based models: halo occupation distribution models, semi-analytic models, and hydrodynamic SPH simulations. We find qualitative agreement between observations and models such that the (major+minor) merger fraction or rate from different models bracket the observations, and show a factor of five dispersion. Near-future improvements can now start to rule out certain merger scenarios. (3) Among ~3698 M*>=1e9 Msun galaxies, we find that the mean SFR of visibly merging systems is only modestly enhanced compared to non-interacting galaxies over z~0.24--0.80. Visibly merging systems only account for less than 30% of the cosmic SFR density over T_b~3--7 Gyr. This suggests that the behavior of the cosmic SFR density over the last 7 Gyr is predominantly shaped by non-interacting galaxies.
One key piece of information missing from high redshift galaxy surveys is the galaxies' cold gas contents. We present a new method to indirectly determine cold gas surface densities and integrated gas masses from galaxy star formation rates and to separate the atomic and molecular gas components. Our predicted molecular and total gas surface densities and integrated masses are in very good agreement with direct measurements quoted in the literature for low and high-z galaxies. We apply this method to predict the gas content for a sample of $\sim 57000$ galaxies in the COSMOS field at $0.5 \leq z \leq 2.0$, selected to have $I_{AB} < 24$ mag. This approach allows us to investigate in detail the redshift evolution of galaxy cold and molecular gas content versus stellar mass and to provide fitting formulae for galaxy gas fractions. We find a clear trend between galaxy gas fraction, molecular gas fraction and stellar mass with redshift, suggesting that massive galaxies consume and/or expel their gas at higher redshift than less massive objects and have lower fractions of their gas in molecular form. The characteristic stellar mass separating gas- from stellar-dominated galaxies decreases with time. This indicates that massive galaxies reach a gas-poor state earlier than less massive objects. These trends can be considered to be another manifestation of downsizing in star formation activity.
ABSTRACT It is well established that supermassive black hole (SMBH) feedback is crucial for regulating the evolution of massive, if not all, galaxies. However, modelling the interplay between SMBHs and their host galaxies is challenging due to the vast dynamic range. Previous simulations have utilized simple subgrid models for SMBH accretion, while recent advancements track the properties of the unresolved accretion disc, usually based on the thin α-disc model. However, this neglects accretion in the radiatively inefficient regime, expected to occur through a thick disc for a significant portion of an SMBH’s lifetime. To address this, we present a novel ‘unified’ accretion disc model for SMBHs, harnessing results from the analytical advection-dominated inflow–outflow solution (ADIOS) model and state-of-the-art general relativistic (radiation-)magnetohydrodynamics (GR(R)MHD) simulations. Going from low to high Eddington ratios, our model transitions from an ADIOS flow to a thin α-disc via a truncated disc, incorporating self-consistently SMBH spin evolution due to Lense–Thirring precession. Utilizing the moving mesh code arepo, we perform simulations of single and binary SMBHs within gaseous discs to validate our model and assess its impact. The disc state significantly affects observable luminosities, and we predict markedly different electromagnetic counterparts in SMBH binaries. Crucially, the assumed disc model shapes SMBH spin magnitudes and orientations, parameters that gravitational wave observatories like LISA and IPTA are poised to constrain. Our simulations emphasize the importance of accurately modelling SMBH accretion discs and spin evolution, as they modulate the available accretion power, profoundly shaping the interaction between SMBHs and their host galaxies.
The nature of the first seeds of supermassive black holes (SMBHs) is currently unknown, with postulated initial masses ranging from $\sim10^5~M_{\odot}$ to as low as $\sim10^2~M_{\odot}$. However, most existing cosmological simulations resolve BHs only down to $\sim10^5-10^6~M_{\odot}$. In this work, we introduce a novel sub-grid BH seed model that is directly calibrated from high resolution zoom simulations that can trace the formation and growth of $\sim 10^3~M_{\odot}$ seeds forming in halos with pristine, star-forming gas. We trace the BH growth along merger trees until their descendants reach masses of $\sim10^4$ or $10^5~M_{\odot}$. The descendants assemble in galaxies with a broad range of properties (e.g., halo masses $\sim10^7-10^9~M_{\odot}$) that evolve with redshift and are sensitive to seed parameters. The results are used to build a new stochastic seeding model that directly seeds these descendants in lower resolution versions of our zoom region. Remarkably, we find that by seeding the descendants simply based on total galaxy mass, redshift and an environmental richness parameter, we can reproduce the results of the detailed gas based seeding model. The baryonic properties of the host galaxies are well reproduced by the mass-based seeding criterion. The redshift-dependence of the mass-based criterion captures the influence of halo growth, star formation and metal enrichment on seed formation. The environment based seeding criterion seeds the descendants in rich environments with higher numbers of neighboring galaxies. This accounts for the impact of unresolved merger dominated growth of BHs, which produces faster growth of descendants in richer environments with more extensive BH merger history. Our new seed model will be useful for representing a variety of low mass seeding channels within next generation larger volume uniform cosmological simulations.
We investigate the clustering properties of high-redshift galaxies within three competing scenarios for assigning luminous galaxies to dark matter halos from N-body simulations: a one galaxy per massive halo model, a quiescent star formation model, and a collisional starburst model. We compare these models to observations of Lyman-Break galaxies at z~3$ With current data and the simple statistic used here, one cannot rule out any of these models, but we see potential for finding distinguishing features using statistics that are sensitive to the tails of the distribution, and statistics based on the number of multiple galaxies per halo, which we explore in an ongoing study.