Abstract We calculate the spectral energy distribution of the first galaxies which contain pre-main-sequence stars by using the stellar evolution code Modules for Experiments in Stellar Astrophysics, the spectra model BT-Settl, and the stellar population synthesis code PEGASE. We calculate the galaxy spectral energy distribution for Salpeter Initial Mass Function. We find that very young first galaxies are bright also in mid-infrared, and the contribution of pre-main-sequence stars can be significant over 0.1 Myr after a star-formation episode.
Mass accretion onto (proto-)stars at high accretion rates > 10^-4 M_sun/yr is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10^-3 M_sun/yr the radius of a protostar is initially small, about a few R_sun. After several solar masses have accreted, the protostar begins to bloat up and for M \simeq 10 M_sun the stellar radius attains its maximum of 30 - 400 R_sun. The large radius about 100 R_sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times the protostar eventually begins to contract and reaches the Zero-Age Main-Sequence (ZAMS) for M \simeq 30 M_sun, independent of the accretion geometry. For accretion rates exceeding several 10^-3 M_sun/yr the protostar never contracts to the ZAMS. The very large radius of several 100s R_sun results in a low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable HII regions.
Young massive clusters (YMCs) are the most massive star clusters forming in nearby galaxies and are thought to be a young analogue to the globular clusters. Understanding the formation process of YMCs leads to looking into very efficient star formation in high-redshift galaxies suggested by recent JWST observations. We investigate possible observational signatures of their formation stage, particularly when the mass of a cluster is increasing via accretion from a natal molecular cloud. To this end, we study the broad-band continuum emission from ionized gas and dust enshrouding YMCs, whose formation is followed by recent radiation-hydrodynamics simulations. We perform post-process radiative transfer calculations using simulation snapshots and find characteristic spectral features at radio and far-infrared frequencies. We show that a striking feature is long-lasting, strong free-free emission from a $\sim$ 10pc-scale HII region with a large emission measure of $\gtrsim 10^7 \mathrm{cm}^{-6} \ \mathrm{pc}$, corresponding to the mean electron density of $\gtrsim 10^3~\mathrm{cm}^{-3}$. There is a turnover feature below $\sim$ 10 GHz, a signature of the optically-thick free-free emission, often found in Galactic ultra-compact HII regions. These features come from the peculiar YMC formation process, where the cluster's gravity effectively traps photoionized gas for a long duration and enables continuous star formation within the cluster. Such large and dense HII regions show distinct distribution on the density-size diagram, apart from the standard sequence of Galactic HII regions. This is consistent with the observational trend inferred for extragalactic HII regions associated with YMCs.
The main purpose of this research is to develop a micro vehicle for severely disabled people because vehicles they can drive safely and easily are so limited in Japan. In this paper, the methods of designing manipulating system considering their physical abilities are written and a new counter-force-method suitable for them is proposed.
Abstract We perform a suite of radiation hydrodynamics simulations of photoevaporating disks, varying the metallicity in a wide range of . We follow the disk evolution for over ∼5000 years by solving hydrodynamics, radiative transfer, and nonequilibrium chemistry. Our chemistry model is updated from the first paper of this series by adding X-ray ionization and heating. We study the metallicity dependence of the disk photoevaporation rate and examine the importance of X-ray radiation. In the fiducial case with solar metallicity, including the X-ray effects does not significantly increase the photoevaporation rate when compared to the case with ultraviolet (UV) radiation only. At subsolar metallicities in the range of , the photoevaporation rate increases as metallicity decreases owing to the reduced opacity of the disk medium. The result is consistent with the observational trend that disk lifetimes are shorter in low metallicity environments. In contrast, the photoevaporation rate decreases at even lower metallicities of , because dust–gas collisional cooling remains efficient compared to far-UV photoelectric heating whose efficiency depends on metallicity. The net cooling in the interior of the disk suppresses the photoevaporation. However, adding X-ray radiation significantly increases the photoevaporation rate, especially at . Although the X-ray radiation itself does not drive strong photoevaporative flows, X-rays penetrate deep into the neutral region in the disk, increase the ionization degree there, and reduce positive charges of grains. Consequently, the effect of photoelectric heating by far-UV radiation is strengthened by the X-rays and enhances the disk photoevaporation.
The detections of gravitational waves (GW) by LIGO/Virgo collaborations provide various possibilities to physics and astronomy. We are quite sure that GW observations will develop a lot both in precision and in number owing to the continuous works for the improvement of detectors, including the expectation to the newly joined detector, KAGRA, and the planned detector, LIGO-India. In this occasion, we review the fundamental outcomes and prospects of gravitational wave physics and astronomy. We survey the development focusing on representative sources of gravitational waves: binary black holes, binary neutron stars, and supernovae. We also summarize the role of gravitational wave observations as a probe of new physics.
We quantitatively examine the significance of star formation triggered in the swept-up shell around an expanding H II region. If the swept-up molecular gas is sufficiently massive, new OB stars massive enough to repeat the triggering process will form in the shell. We determine the lower limit (Mthr) for the mass of the star that sweeps up the molecular gas, where at least one new star with mass M* > Mthr forms after shell fragmentation. To calculate the threshold stellar mass Mthr, we examine how massive molecular shells can form around various central stars, by performing detailed numerical radiation hydrodynamics calculations. The mass of the photodissociated gas is generally larger than the mass of the photoionized gas. However, the swept-up molecular mass exceeds the photodissociated mass with a higher mass star of M* ≳ 20 M☉. The accumulated molecular mass generally increases with the stellar mass, and amounts to 104-105 M☉ for M* ≳ 20 M☉ with an ambient density of n ~ 102 cm-3. The threshold stellar mass is Mthr ~ 18 M☉ with a star formation efficiency of ~ 0.1 and n ~ 102 cm-3. We examine the generality of this mode of runaway triggering for different sets of parameters and find that Mthr ~ 15-20 M☉ in various situations. If the ambient density is too high or the star formation efficiency is too low, the triggering is not runaway, but a single event.
The 6.7 GHz methanol maser emission, a tracer of forming massive stars, sometimes shows enigmatic periodic flux variations over several 10-100 days. In this Letter, we propose that this periodic variations could be explained by the pulsation of massive protostars growing under rapid mass accretion with rates of Mdot > 10^-3 Msun/yr. Our stellar evolution calculations predict that the massive protostars have very large radius exceeding 100 Rsun at maximum, and we here study the pulsational stability of such the bloated protostars by way of the linear stability analysis. We show that the protostar becomes pulsationally unstable with various periods of several 10-100 days, depending on different accretion rates. With the fact that the stellar luminosity when the star is pulsationally unstable also depends on the accretion rate, we derive the period-luminosity relation log (L/Lsun) = 4.62 + 0.98log(P/100 day), which is testable with future observations. Our models further show that the radius and mass of the pulsating massive protostar should also depend on the period. It would be possible to infer such protostellar properties and the accretion rate with the observed period. Measuring the maser periods enables a direct diagnosis of the structure of accreting massive protostars, which are deeply embedded in dense gas and inaccessible with other observations.
( N ^ C ^ N )‐Pincer type bis(iminomethyl)phenylPt II complexes 1 and 2 having a macrocyclic vaulting structure consisting of deca‐ undeca‐, and dodecamethylene bridges were synthesized and subsequently characterized by NMR, IR spectroscopy, mass spectrometry, and single‐crystal XRD. Unprecedented remote intramolecular Pt–H interactions were observed on the linker hydrogen atoms at β‐and ζ‐positions in a highly regiospecific manner both in the crystal and solution states. The hydrogen bonding nature, originating from overlap between Pt d z ² and σ* of the specific C–H bonds, was revealed by NBO analysis of 1 on the basis of dispersion‐corrected DFT calculations.