The gold standard in cerebrospinal fluid (CSF) cell immunophenotyping is flow cytometry. Nevertheless, the small amount of CSF cells and the invasive character of lumbar puncture limit the spectrum of possible investigation. Chipcytometry, a modified approach to slide-based cytometry, might be a useful tool for CSF analysis due to the possibility of iterative staining, imaging, and bleaching cycles. The aim of this study was to compare flow cytometric leukocyte subset analysis with Chipcytometry comparing the percentage distribution of distinct cell populations and the T-cell CD4:CD8 ratio. Moreover, this study investigated the interpretability of chips loaded with CSF cells and examined the applicability of Chipcytometry in clinical practice. 375 CSF samples from 364 patients were analyzed by Chipcytometry using an automated upright microscope. Cell surface molecules were stained using fluorescence-labeled monoclonal antibodies. For cross-validation experiments, flow cytometry data of six patients were analyzed and matched with Chipcytometry data. Our experiments showed a better agreement examined by Bland-Altman analysis for samples with CSF pleocytosis than for normocellular CSF samples. Data were more consistent for B cells and CD4:CD8 ratio than for T cells and monocytes. Advantages of Chipcytometry compared to flow cytometry are that cells once fixated can be analyzed for up to 20 months with additional markers at any time. The clinical application of Chipcytometry is demonstrated by two illustrative case reports. However, the low amount of CSF cells limits the analysis of normocellular CSF samples, as in our cohort only 11.7% of respectively loaded chips had sufficient cell density for further investigation compared to 59.8% of all chips loaded with samples with elevated cell counts (≥ 5/μl). Varying centrifuge settings, tube materials and resuspension technique were not able to increase the cell yield. In summary, the results demonstrate the great potential of Chipcytometry of CSF cells for both scientific questions and routine diagnostic. A new chip design optimized to meet the requirements of CSF would greatly enhance the value of this method. Cross-validation results need to be confirmed in a larger cohort.
Natalizumab is an approved medication for highly active multiple sclerosis (MS). Progressive multifocal leukoencephalopathy (PML) may occur as a severe side effect of this drug. Here, we describe pathological and radiological characteristics of immune reconstitution inflammatory syndrome (IRIS), which occurs in natalizumab-associated PML after the cessation of therapy, and we differentiate it from ongoing PML. Brain biopsy tissue and MRI scans from five MS patients with natalizumab-associated PML were analyzed and their histology compared with non-MS PML. Histology showed an extensive CD8-dominated T cell infiltrate and numerous macrophages within lesions, and in nondemyelinated white and grey matter, in four out of five cases. Few or no virally infected cells were found. This was indicative of IRIS as known from HIV patients with PML. Outstandingly high numbers of plasma cells were present as compared to non-MS PML and typical MS lesions. MRI was compatible with IRIS, revealing enlarging lesions with a band-like or speckled contrast enhancement either at the lesion edge or within lesions. Only the fifth patient showed typical PML pathology, with low inflammation and high numbers of virally infected cells. This patient showed a similar interval between drug withdrawal and biopsy (3.5 months) to the rest of the cohort (range 2.5-4 months). MRI could not differentiate between PML-associated IRIS and ongoing PML. We describe in detail the histopathology of IRIS in natalizumab-associated PML. PML-IRIS, ongoing PML infection, and MS exacerbation may be impossible to discern clinically alone. MRI may provide some clues for distinguishing different pathologies that can be differentiated histologically. In our individual cases, biopsy helped to clarify diagnoses in natalizumab-associated PML.
The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.
Therapies that target the underlying pathology of multiple sclerosis (MS), including focal and diffuse damage, may improve long-term disease control. Focal damage (inflammatory lesions) manifests clinically mainly as relapses, whereas diffuse damage (neurodegeneration and brain volume loss) has been more closely associated with disability progression and cognitive decline. Given that first-line therapies such as beta-interferon and glatiramer acetate, which are primarily directed against inflammation, might fail to adequately control disease activity in some patients, it has been recommended to switch these patients early to a therapy of higher efficacy, possibly targeting both components of MS pathology more rigorously. This review provides an overview of the efficacy of EU-approved disease-modifying therapies on conventional MS outcome measures (relapses, disability progression and paraclinical magnetic resonance imaging endpoints) in addition to brain volume loss, a measure of diffuse damage in the brain. In addition, the evidence supporting early treatment optimization in patients with high disease activity despite first-line therapy will be reviewed and an algorithm for optimal disease control will be presented.
Abstract: The terminal complement C5 inhibitor ravulizumab was engineered from the humanized monoclonal antibody eculizumab to have an extended half-life and duration of action. It binds to human terminal complement protein C5, inhibiting its cleavage into C5a and C5b, thus preventing the cascade of events that lead to architectural destruction of the postsynaptic neuromuscular junction membrane by the membrane attack complex, and consequent muscle weakness in patients with anti-acetylcholine receptor (AChR) antibody-positive generalized myasthenia gravis (gMG). The 26-week randomized, placebo-controlled period (RCP) of the phase 3 CHAMPION MG study demonstrated the rapid efficacy of ravulizumab in reducing MG symptoms. Weight-based dosing of ravulizumab every 8 weeks provided sustained efficacy, in terms of patient-reported (Myasthenia Gravis–Activities of Daily Living) and clinician-reported (Quantitative Myasthenia Gravis) endpoints in patients with anti-AChR antibody-positive gMG. Pharmacokinetic and pharmacodynamic analyses showed therapeutic serum ravulizumab concentrations (> 175 μg/mL) were achieved immediately after the first dose and were maintained throughout 26 weeks, irrespective of patient body weight; inhibition of serum free C5 was immediate, complete (< 0.5 μg/mL), and sustained in all patients. Interim results from the open-label extension (OLE) showed that after 60 weeks, efficacy was maintained in patients continuing on ravulizumab. Rapid and sustained improvements in efficacy, similar to those seen in patients initiating ravulizumab in the RCP, were observed after initiation of ravulizumab treatment in patients who switched from placebo in the RCP to ravulizumab in the OLE. The findings from the RCP and OLE support ravulizumab's favorable safety profile. In conclusion, ravulizumab has a simple weight-based administration and long dosing interval. Its targeted mechanism of action without generalized immunosuppression is reflected in its rapid onset of symptom improvement, sustained efficacy and good safety profile in the treatment of patients with anti-AChR antibody-positive gMG. Plain Language Summary: Ravulizumab in anti-AChR antibody-positive gMGRavulizumab was engineered from eculizumab to have an extended half-life and longer duration of action. It binds to terminal complement protein C5 to inhibit anti-AChR antibody-mediated activation of terminal complement and destruction of the neuromuscular junction.Pharmacokinetic/pharmacodynamic analyses support a simple weight-based administration and long dosing interval and show that therapeutic ravulizumab concentrations and complete inhibition of C5 were achieved immediately after the first dose.The 26-week randomized placebo-controlled period (RCP) of the CHAMPION MG study in patients with anti-AChR antibody-positive gMG showed that ravulizumab has rapid and sustained efficacy with good safety and tolerability across a broad range of patients.Ravulizumab's efficacy, safety, and tolerability were confirmed in interim analyses of the open-label extension study (including data for up to 60 weeks from the RCP baseline): efficacy was maintained in patients remaining on ravulizumab; rapid and sustained efficacy was established in patients switching from placebo to ravulizumab. Keywords: acetylcholine receptor antibody, complement, membrane attack complex, monoclonal antibody, terminal complement complex
Modulation of immune cell trafficking across the blood-brain barrier has not only introduced a therapeutic avenue for multiple sclerosis (MS) but also represents an example of reverse translational medicine. Data from clinical trials of drugs such as natalizumab and fingolimod have revealed the involvement of different compartments in relapsing versus non-relapsing MS immune biology, contributed to our understanding of central nervous system (CNS) immune surveillance, and stimulated new fields of research. Here, we discuss the results of these trials, as well as patient biomaterial-based scientific projects, and how both have informed our understanding of CNS immunopathology.
Migration of encephalitogenic CD4+ T lymphocytes across the blood-brain barrier is an essential step in the pathogenesis of multiple sclerosis (MS). We here demonstrate that expression of the co-stimulatory receptor NKG2D defines a subpopulation of CD4+ T cells with elevated levels of markers for migration, activation, and cytolytic capacity especially when derived from MS patients. Furthermore, CD4+NKG2D+ cells produce high levels of proinflammatory IFN-γ and IL-17 upon stimulation. NKG2D promotes the capacity of CD4+NKG2D+ cells to migrate across endothelial cells in an in vitro model of the blood-brain barrier. CD4+NKG2D+ T cells are enriched in the cerebrospinal fluid of MS patients, and a significant number of CD4+ T cells in MS lesions coexpress NKG2D. We further elucidated the role of CD4+NKG2D+ T cells in the mouse system. NKG2D blockade restricted central nervous system migration of T lymphocytes in vivo, leading to a significant decrease in the clinical and pathologic severity of experimental autoimmune encephalomyelitis, an animal model of MS. Blockade of NKG2D reduced killing of cultivated mouse oligodendrocytes by activated CD4+ T cells. Taken together, we identify CD4+NKG2D+ cells as a subpopulation of T helper cells with enhanced migratory, encephalitogenic and cytotoxic properties involved in inflammatory CNS lesion development.
Background While cerebral lesions are common in Fabry disease (FD), spinal lesions have not been described, and their presence was suggested to be indicative of multiple sclerosis. Here, we present a FD patient with histopathological confirmed spinal ischemic stroke. Case presentation A patient with genetically and biochemically diagnosed FD and characteristic manifestations (acroparesthesia, angiokeratomas, hypohidrosis, microalbuminuria, myocardial hypertrophy) presented with paraplegia, loss of all sensory modalities below Th9, and loss of bowel and bladder function. While cranial MRI was inconspicuous, spinal MRI showed a T2 hyperintense, non-contrast-enhancing lesion of the thoracic spinal cord. Lumbar puncture revealed mild pleocytosis, increased total protein and lactate levels, decreased glucose ratio, and negative oligoclonal bands. Rheumatic, neoplastic, and infectious disorders were excluded. The patient received intravenous and intrathecal methylprednisolone, plasmapheresis, intravenous immunoglobulins, and cyclophosphamide without clinical improvement. A biopsy of the thoracic lesion was performed. A histopathological examination revealed necrotic tissue consistent with spinal cord ischemia. Diagnostic work-up for stroke etiology clarification was not conspicuous. Two years onward, the patient suffered from a pontine infarction and a transient ischemic attack. Conclusion The current case highlights the possible occurrence of spinal ischemic lesions in FD. Thus, the diagnosis of FD should not be prematurely discarded in the presence of spinal lesions.