Introduction: Ghana was declared polio-free in 2015 after the last polio case in 2008. We determined the poliovirus neutralizing antibody levels among individuals to identify possible immunity gaps.Methods: A cross-sectional, hospital-based study was undertaken in Northern, Ashanti and Greater Accra regions of Ghana. Individuals referred for haematology at the teaching hospitals' laboratories were invited to participate in our study. Neutralizing-antibody titers to poliovirus serotypes 1,2 & 3 were assayed by WHO-standards. Antibody titers of ≥8 were considered protective. Bivariate and multivariate analyses were conducted on subject characteristics to assess potential factors for failure to seroconvert. P-values < 0.05 were considered statistically significant.Results: Poliovirus (PV) neutralizing-antibody serotypes 1, 2 and 3 were detected in 86.0% (264/307), 84% (258/307) and 75% (230/307) of samples respectively. 60.1% (185/307) were seropositive for the three poliovirus serotypes. Neutralizing poliovirus antibodies for PV1 and PV2 were higher than for PV3. Seroprevalence of poliovirus-neutralizingantibodies among males (PV1=51.9%, PV2= 51.6% and PV3= 52.6%) were higher than in females. Seroprevalence rates of poliovirus-neutralizing antibodies (PV1, PV2, and PV3) were highest in the Northern region (90%, 81%, and 77%). Poliovirus neutralizing-antibodies (PV1and PV2) decreased with age [p< 0.001]. Low seroprevalence ofpoliovirus-neutralizing antibodies was significantly associated with low school attendance of mothers (p<0.001).Conclusion: Our study population has some protection from polio. However, immunity appears to be lower with a higher age or low Mother's education. This may suggest the need for young-adult booster-dose to minimize the risk of wild poliovirus infection.Keywords: poliomyelitis, seroprevalence, neutralizing antibodies, polio-immunity, GhanaFunding: WHO Country Office Ghana.
Abstract The eradication of poliovirus is at its last phase through the efforts and strategies of Global Polio Eradication Initiation (GPEI). There are very few countries that are still endemic with wild poliovirus (WPV) and others with circulating vaccine derived poliovirus (cVDPV). The aim of the study was to detect silent circulation of WPV and VDPV in four districts within the Eastern and Volta region of Ghana. A systematic longitudinal design was used for the study. The convenient sampling technique was used to collect the samples every four weeks from two open and close sewage systems. The open sewage systems were located in New Juabeng and Ho districts while the close sewage systems were located in Asuogyaman and Ketu South districts. A total of 35 sewage samples were collected from September 2018 to May 2019. L20B and RD cell lines were used for the purification of poliovirus (PV) while real-time reverse transcriptase polymerase chain reaction (rRT-PCR) was use to characterize the serotypes of the PVs. The findings of the study showed that the prevalence of non-polio enterovirus (NPEV) and Sabin were 65.71% and 14.29% respectively. The characterized Sabins were serotype 1 and serotype 3 which were circulating in the two districts within the Eastern Region. The study did not detect any WPV and VDPV but isolated Sabin strains of the poliovirus. This necessitates the need for continuous environmental surveillance for poliovirus nationwide.
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by asymptomatic individuals has been reported since the early stages of the coronavirus disease 2019 (COVID-19) outbreak in various parts of the world. However, there are limited data regarding SARS-CoV-2 among asymptomatic individuals in Ghana. The aim of the study was to use test data of prospective travelers from Ghana as a proxy to estimate the contribution of asymptomatic cases to the spread of COVID-19.The study analyzed the SARS-CoV-2 PCR test data of clients whose purpose for testing was classified as "Travel" at the COVID-19 walk-in test center of the Noguchi Memorial Institute for Medical Research (NMIMR) from July 2020 to July 2021. These individuals requesting tests for travel generally had no clinical symptoms of COVID-19 at the time of testing. Data were processed and analyzed using Microsoft Excel office 16 and STATA version 16. Descriptive statistics were used to summarize data on test and demographic characteristics.Out of 42,997 samples tested at the center within that period, 28,384 (66.0%) were classified as "Travel" tests. Of these, 1,900 (6.7%) tested positive for SARS-CoV-2. The majority (64.8%) of the "Travel" tests were requested by men. The men recorded a SARS-CoV-2 positivity of 6.9% compared to the 6.4% observed among women. Test requests for SARS-CoV-2 were received from all regions of Ghana, with a majority (83.3%) received from the Greater Accra Region. Although the Eastern region recorded the highest SARS-CoV-2 positivity rate of 8.35%, the Greater Accra region contributed 81% to the total number of SARS-CoV-2 positive cases detected within the period of study.Our study found substantial SARS-CoV-2 positivity among asymptomatic individuals who, without the requirement for a negative SARS-CoV-2 result for travel, would have no reason to test. These asymptomatic SARS-CoV-2-infected individuals could have traveled to other countries and unintentionally spread the virus. Our findings call for enhanced tracing and testing of asymptomatic contacts of individuals who tested positive for SARS-CoV-2.
Human enteroviruses are common in children causing asymptomatic infections ranging from mild to severe illnesses. In Ghana, information on the prevalence of non-polio enterovirus causing acute flaccid paralysis is available but data on surveillance of these viruses in school children is scanty. Here, the prevalence of human enteroviruses among apparently healthy children in selected school in Accra was studied.Stool samples from 273 apparently healthy children less than eight years of age in 9 selected nursery schools were collected between December 2010 and March 2011 and processed for human enteroviruses on L20B, RD and Hep-2 cell lines. Positive Isolates were characterized by microneutralisation assay with antisera pools from RIVM, the Netherlands according to standard methods recommended by WHO.Of the 273 samples processed, 66 (24.2%) non-polio enteroviruses were isolated. More growth was seen on Hep-2C (46%) only than RD (18%) only and on both cell lines (34%). No growth was seen on L20B even after blind passage. Excretion of non-polio enteroviruses was found in all the schools with majority in BD school. Serotyping of the isolates yielded predominantly Coxsackie B viruses followed by echoviruses 13 and 7. More than half of the isolates could not be typed by the antisera pools.The study detected 13 different serotypes of non-polio enteroviruses in circulation but no poliovirus was found. BD school was found to have the highest prevalence of NPEV. Complete identification through molecular methods is essential to establish the full range of NPEVs in circulation in these schools.
Acute lower respiratory tract infection (ALRTI) in children under 5 years is known to be predominantly caused by respiratory syncytial virus (RSV). In recent times, however, human metapneumovirus (HMPV) has also been implicated. This study sought to investigate and genotype respiratory syncytial virus and human metapneumovirus in children presenting with ALRTIs infection at the Princess Marie Louis Children's Hospital in Accra, Ghana.Children below 5 years who were clinically diagnosed of ALRTI and on admission at the study site were recruited between September 2015 and November 2016 for this study. Demographic data information was obtained by means of a standardized questionnaire; and relevant clinical information was obtained from medical records. Nasopharyngeal swabs were collected from 176 children recruited for the study. Ribonucleic acid was extracted from swabs and cDNA syntheses were performed by RT-PCR. RSV-positive amplicons were sequenced and analyzed for genotype assignment.RSV and HMPV prevalence among the sampled subjects were 11.4 and 1.7% respectively. Of the RSV positives, 8/20 (40%) were RSV-A and 12/20 (60%) were RSV-B. The highest prevalence was observed in children less than 12 months old. Phylogenetic analysis of the second hypervariable region of the RSV G-gene revealed that all RSV group A viruses belonged to the "novel" ON1 genotype containing the 72-nucleotide duplication; and RSV group B viruses belong to the BA IX genotype.RSV is frequently detected in children aged under 5 years admitted with ALRTI in Ghana. Continued surveillance of viral aetiological agents is warranted to elucidate the prevalence and transmission patterns of viral pathogens that cause respiratory tract infections among children. This will help inform appropriate intervention approaches.
The relationship between virus evolution and recombination in species B human enteroviruses was investigated through large-scale genetic analysis of echovirus type 9 (E9) and E11 isolates (n = 85 and 116) from 16 European, African, and Asian countries between 1995 and 2008. Cluster 1 E9 isolates and genotype D5 and A E11 isolates showed evidence of frequent recombination between the VP1 and 3Dpol regions, the latter falling into 23 (E9) and 43 (E11) clades interspersed phylogenetically with 46 3Dpol clades of E30 and with those of other species B serotypes. Remarkably, only 2 of the 112 3Dpol clades were shared by more than one serotype (E11 and E30), demonstrating an extremely large and genetically heterogeneous recombination pool of species B nonstructural-region variants. The likelihood of recombination increased with geographical separation and time, and both were correlated with VP1 divergence, whose substitution rates allowed recombination half-lives of 1.3, 9.8, and 3.1 years, respectively, for E9, E11, and E30 to be calculated. These marked differences in recombination dynamics matched epidemiological patterns of periodic epidemic cycles of 2 to 3 (E9) and 5 to 6 (E30) years and the longer-term endemic pattern of E11 infections. Phylotemporal analysis using a Bayesian Markov chain Monte Carlo method, which placed recombination events within the evolutionary reconstruction of VP1, showed a close relationship with VP1 lineage expansion, with defined recombination events that correlated with their epidemiological periodicity. Whether recombination events contribute directly to changes in transmissibility that drive epidemic behavior or occur stochastically during periodic population bottlenecks is an unresolved issue vital to future understanding of enterovirus molecular epidemiology and pathogenesis.
Background Influenza co-infection with bacteria is a leading cause of influenza-related deaths and severe respiratory infections, especially among high-risk groups like cancer patients undergoing treatment. However, acute respiratory infection (ARI)-like symptoms developed by upper-torso cancer (UTC) patients receiving radiotherapy are considered as side-effects of the radiation. Hence influenza and bacterial pathogens implicated in ARI are not investigated. Methods This prospective cohort study examined 85 in-patients with upper-torso cancers undergoing radiotherapy at the National Radiotherapy, Oncology and Nuclear Medicine Centre (NRONMC) of Korle-Bu Teaching Hospital (KBTH) in Accra, Ghana. Eligible patients who consented were recruited into the study from September 2018 to April 2019. Influenza viruses A and B in addition to the following bacteria species Streptococcus pneumonia , Haemophilus influenzae , Neisseria meningitidis and Staphylococcus aureus were detected from oropharyngeal and nasopharyngeal swab specimens collected at three different time points. Presence of respiratory pathogens were investigated by influenza virus isolation in cell culture, bacterial culture, polymerase chain reaction (PCR) and next generation sequencing (NGS) assays. Results Of the 85 eligible participants enrolled into the study, 87% were females. Participants were 17 to 77 years old, with a median age of 49 years. Most of the participants (88%) enrolled had at least one pathogen present. The most prevalent pathogen was N . meningitidis (63.4%), followed by H . influenzae (48.8%), Influenza viruses A and B (32.9%), S . pneumoniae (32.9%) and S . aureus (12.2%). Approximately, 65% of these participants developed ARI-like symptoms. Participants with previous episodes of ARI, did not live alone, HNC and total radiation less than 50 Gy were significantly associated with ARI. All treatment forms were also significantly associated with ARI. Conclusion Data generated from the study suggests that ARI-like symptoms observed among UTC patients receiving radiotherapy in Ghana, could be due to influenza and bacterial single and co-infections in addition to risk factors and not solely the side-effects of radiation as perceived. These findings will be prime importance for diagnosis, prevention, treatment and control for cancer patients who present with such episodes during treatment.
In March 2020, the first cases of SARS-CoV-2 were reported in Accra, Ghana. These initial cases were diagnosed at the Advanced Research Laboratories (ARL) of the Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana. The ARL which hitherto was used for routine clinical research in viral, bacteria and immunological studies has since been the facility of choice for testing for all suspected cases of COVID-19 submitted from across Ghana and beyond. The success of testing at the ARL hinged on the availability of several laboratory spaces furnished with state-of-the-art diagnostic equipment and working aids. During the “peak season” where overwhelming numbers of clinical specimens were received, the ARL processed and got results for close to four thousand samples daily. After general disinfection and re-bagging into smaller numbers, at the entrance of the ARL, the samples are taken to a central receiving laboratory, where they are received and entered in a database with accompanying case investigation forms. All samples that are successfully sorted and matched are sent to general laboratories for nucleic acid extraction and then referred to the Instrumentation laboratory for real time reverse-transcription polymerase chain reaction (RT-PCR). When the RT-PCRs were completed, results were analysed and transmitted via email and/or local network to the data reporting office. The data managers then reported results to the investigators and the Ghana Health Service (GHS). Additionally, the ARL provided a next-generation Genome Sequencing platform in partnership with the West African Centre for Cell Biology of Infectious Pathogens at the University of Ghana, which was essential in reporting the genome data of the circulating variants of SARS-CoV-2 in Ghana. Conclusively, it is worth noting, that the NMIMR fulfilled its mandate of supporting the country with specialized diagnostics through the judicious use of the ARL for SARS-CoV-2 testing, from sample receipt to data reporting. The ARL facility and the research faculty have trained and continue to train budding laboratories on biosafety, biosecurity, best practices and testing protocols. It is obvious that the success story of SARS-CoV-2 testing in Ghana, cannot be complete without the mention of the ARL at NMIMR.
Nose masks are widely worn for protection against respiratory pathogens, including SARS-CoV-2. They have been reported as possible substrates for viral sampling and testing for COVID-19 but, evaluations have so far been purposive; involving individuals known to have the infection and using improved materials on the nose masks to trap the virus. We investigated the feasibility of using the regular 3-ply surgical masks and, voluntary coughing as a mode of particle expulsion for detecting SARS-CoV-2 infections in a cross-sectional study at Ghana's first COVID-19 testing reference laboratory, the Noguchi Memorial Institute for Medical Research, University of Ghana. Paired samples of naso-oropharyngeal swabs and nose masks already worn by 103 consenting adult participants (retro masks) were collected. Participants were also required to produce three strong coughs into a newly supplied sterile surgical nose mask. Pre-wetted swabs in Viral Transport Media (VTM) were used in swabbing the inner lining of each nose mask. The swabs used were then stored in VTM to maintain the integrity of the samples. PCR results of SARS-CoV-2 detection from the nose masks were compared to those from naso-oropharyngeal swabs ('gold-standard'). Out of the 103 participants tested with all three methods, 66 individuals sampled with naso-oropharyngeal swabs were detected as positive, and the retro and new masks matched 9 and 4, respectively. Only 3 individuals were positive across all three sampling methods accessed. The retro nose masks performed better in matching the gold-standard results than the new mask + coughing method, with 90% vs 80% sensitivity, positive predictive value of 13.6% vs 6%, and a weak but significant linear relationship (adj. R2 = 0.1; P = 0.0004). Importantly, we also show that the nose masks would work for sampling whether individuals are symptomatic or asymptomatic since gold-standard PCR cycling threshold (Ct) values for positive individuals did not differ between the two groups (P< 0.05). We recommend including features such as talking during participant engagement, use of a spontaneous cough inducer and increased coughing bouts > 3, to improve the performance of sterile nose masks for SARS-CoV-2 detection.