Sanfilippo syndrome type III A (Mucopolysaccharidosis (MPS) III A) is a rare, autosomal recessive, lysosomal storage disease, characterized by the accumulation of heparan sulfate and the loss of function of lysosomal heparan N-sulfatase activity. The disease leads to devastating mental and physical consequences and a mouse model that can be used to explore gene therapy and enzyme or cell replacement therapies is needed. We have previously identified a mouse with low sulfamidase activity and symptoms and pathologies typical of MPS III A (Bhaumik, M., Muller, V. J., Rozaklis, T., Johnson, L., Dobrenis, K., Bhattacharyya, R., Wurzelmann, S., Finamore, P., Hopwood, J. J., Walkley, S. U., and Stanley, P. [1999] A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome). Glycobiology9, 1389–1396). We now show that the sulfamidase gene of the MPS III A mouse carries a novel mutation (G91A) that gives an amino acid change (D31N) likely to interfere with the coordination of a divalent metal ion in the active site of this sulfatase. This spontaneous mouse mutant is an excellent model for MPS III A in humans as this disease often arises due to a missense mutation in lysosomal sulfamidase.
Autoimmune gastritis is a CD4+ T cell-mediated disease induced in genetically susceptible mice by thymectomy on the third day after birth. Previous linkage analysis indicated that Gasa1 and Gasa2, the major susceptibility loci for gastritis, are located on mouse chromosome 4. Here we verified these linkage data by showing that BALB.B6 congenic mice, in which the distal ∼40 Mb of chromosome 4 was replaced by C57BL/6 DNA, were resistant to autoimmune gastritis. Analysis of further BALB.B6 congenic strains demonstrated that Gasa1 and Gasa2 can act independently to cause full expression of susceptibility to autoimmune disease. Gasa1 and Gasa2 are located between D4Mit352-D4Mit204 and D4Mit343-telomere, respectively. Numerical differences in Foxp3+ regulatory T cells were apparent between the BALB/c and congenic strains, but it is unlikely that this phenotype accounted for differences in autoimmune susceptibility. The positions of Gasa1 and Gasa2 correspond closely to the positions of Idd11 and Idd9, two autoimmune diabetes susceptibility loci in nonobese diabetic (NOD), mice and this prompted us to examine autoimmune gastritis in NOD mice. After neonatal thymectomy, NOD mice developed autoimmune gastritis, albeit at a slightly lower incidence and severity of disease than in BALB/c mice. Diabetes-resistant congenic NOD.B6 mice, harbouring a B6-derived interval encompassing the Gasa1/2-Idd9/11 loci, demonstrated a slight reduction in the incidence of autoimmune gastritis. This reduction was not significant compared with the reduction observed in BALB.B6 congenic mice, suggesting a difference in the genetic aetiology of autoimmune gastritis in NOD and BALB mice.
Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.
Background information . Acid‐secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H + , K + ATPase‐containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane‐dense cytoplasm of parietal cells. Results . Here, we demonstrate that the Golgi apparatus of parietal cells is not the typical juxta‐nuclear ribbon of stacks, but rather individual Golgi units are scattered throughout the cytoplasm. The Golgi membrane structures labelled with markers of both cis ‐ and trans ‐Golgi membrane, indicating the presence of intact Golgi stacks. The parietal cell Golgi stacks were closely aligned with the microtubule network and were shown to participate in both anterograde and retrograde transport pathways. Dispersed Golgi stacks were also observed in parietal cells from H + , K + ATPase‐deficient mice that lack tubulovesicular membranes. Conclusions . These results indicate that the unusual organization of individual Golgi stacks dispersed throughout the cytoplasm of these terminally differentiated cells is likely to be a developmentally regulated event.
<p>Supplementary Methods. Supplementary Figure S1. Validation of the physiological interaction between CIB2 and SK1 using proximity ligation assays with different antibody combinations. Supplementary Figure S2. N-myristoylation of CIB2 does not affect its interaction with SK1. Supplementary Figure S3. Over-expression of CIB2 sensitises cells to TNFα-induced caspase 3/7 activation. Supplementary Figure S4. Stratification of CIB2 gene expression in ovarian cancer tissues. Supplementary Figure S5. Gene expression of SK1 in ovarian tissues. Supplementary Figure S6. CIB2 inhibits neoplastic growth and cell migration of OV90 ovarian cancer cells. Supplementary Table S1. Clinical characteristics of the ovarian cancer patient cohort from which ovirian cancer cells were derived.</p>
// Melissa R. Pitman 1 , Jason A. Powell 1, 3 , Carl Coolen 1 , Paul A.B. Moretti 1 , Julia R. Zebol 1 , Duyen H. Pham 1 , John W. Finnie 4, 5 , Anthony S. Don 6 , Lisa M. Ebert 1, 3 , Claudine S. Bonder 1, 2, 3 , Briony L. Gliddon 1 , Stuart M. Pitson 1, 2, 3, * 1 Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia 2 School of Molecular and Biomedical Science, University of Adelaide, SA 5005, Australia 3 School of Medicine, University of Adelaide, SA 5005, Australia 4 School of Veterinary Science, University of Adelaide, SA 5005, Australia 5 SA Pathology, Hanson Institute Centre for Neurological Diseases, Adelaide, SA 5000, Australia 6 Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia Correspondence to: Stuart M. Pitson, e-mail: stuart.pitson@unisa.edu.au Keywords: Apoptosis, in silico docking, molecular modeling, small molecule inhibitor, sphingosine kinase Received: September 05, 2014 Accepted: January 25, 2015 Published: March 11, 2015 ABSTRACT The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes.
While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.
Gastric acid secretion by the H + -K + -ATPase at the apical surface of activated parietal cells requires luminal K + provided by the KCNQ1/KCNE2 K + channel. However, little is known about the trafficking and relative spatial distribution of KCNQ1 and H + -K + -ATPase in resting and activated parietal cells and the capacity of KCNQ1 to control acid secretion. Here we show that inhibition of KCNQ1 activity quickly curtails gastric acid secretion in vivo, even when the H + -K + -ATPase is permanently anchored in the apical membrane, demonstrating a key role of the K + channel in controlling acid secretion. Three-dimensional imaging analysis of isolated mouse gastric units revealed that the majority of KCNQ1 resides in an intracytoplasmic, Rab11-positive compartment in resting parietal cells, distinct from H + -K + -ATPase-enriched tubulovesicles. Upon activation, there was a significant redistribution of H + -K + -ATPase and KCNQ1 from intracytoplasmic compartments to the apical secretory canaliculi. Significantly, high Förster resonance energy transfer was detected between H + -K + -ATPase and KCNQ1 in activated, but not resting, parietal cells. These findings demonstrate that H + -K + -ATPase and KCNQ1 reside in independent intracytoplasmic membrane compartments, or membrane domains, and upon activation of parietal cells, both membrane proteins are transported, possibly via Rab11-positive recycling endosomes, to apical membranes, where the two molecules are closely physically opposed. In addition, these studies indicate that acid secretion is regulated by independent trafficking of KCNQ1 and H + -K + -ATPase.