Na+-d-glucose cotransporter 1 (SGLT1) is rate-limiting for glucose absorption in the small intestine. Shortly after intake of glucose-rich food, SGLT1 abundance in the luminal membrane of the small intestine is increased. This upregulation occurs via glucose-induced acceleration of the release of SGLT1-containing vesicles from the trans-Golgi network (TGN), which is regulated by a domain of protein RS1 (RSC1A1) named RS1-Reg. Dependent on phosphorylation, RS1-Reg blocks release of vesicles containing SGLT1 or concentrative nucleoside transporter 1. The hypothesis has been raised that RS1-Reg binds to different receptor proteins at the TGN, which trigger release of vesicles with different transporters. To identify the presumed receptor proteins, two-hybrid screening was performed. Interaction with ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme of polyamine synthesis, was observed and verified by immunoprecipitation. Binding of RS1-Reg mutants to ODC1 was characterized using surface plasmon resonance. Inhibition of ODC1 activity by RS1-Reg mutants and the ODC1 inhibitor difluoromethylornithine (DFMO) was measured in the absence and presence of glucose. In addition, short-term effects of DFMO, RS1-Reg mutants, the ODC1 product putrescine, and/or glucose on SGLT1 expressed in oocytes of Xenopus laevis were investigated. High-affinity binding of RS1-Reg to ODC1 was demonstrated, and evidence for a glucose binding site in ODC1 was provided. Binding of RS1-Reg to ODC1 inhibits the enzymatic activity at low intracellular glucose, which is blunted at high intracellular glucose. The data suggest that generation of putrescine by ODC1 at the TGN stimulates release of SGLT1-containing vesicles. This indicates a biomedically important role of ODC1 in regulation of glucose homeostasis.
The effects of mutations in the modeled outward-open cleft of rat organic cation transporter 1 (rOCT1) on affinities of substrates and inhibitors were investigated. Human embryonic kidney 293 cells were stably transfected with rOCT1 or rOCT1 mutants, and uptake of the substrates 1-methyl-4-phenylpyridinium+ (MPP+) and tetraethylammonium+ (TEA+) or inhibition of MPP+ uptake by the nontransported inhibitors tetrabutylammonium+ (TBuA+), tetrapentylammonium+ (TPeA+), and corticosterone was measured. Uptake measurements were performed on confluent cell layers using a 2-minute incubation or in dissociated cells using incubation times of 1, 5, or 10 seconds. With both methods, different apparent Michaelis-Menten constant (Km) values, different IC50 values, and varying effects of mutations were determined. In addition, varying IC50 values for the inhibition of MPP+ uptake and varying effects of mutations were obtained when different MPP+ concentrations far below the apparent Km value were used for uptake measurements. Eleven mutations were investigated by measuring initial uptake in dissociated cells and employing 0.1 µM MPP+ for uptake during inhibition experiments. Altered affinities for substrates and/or inhibitors were observed when Phe160, Trp218, Arg440, Leu447, and Asp475 were mutated. The mutations resulted in changes of apparent Km values for TEA+ and/or MPP+. Mutation of Trp218 and Asp475 led to altered IC50 values for TBuA+, TPeA+, and corticosterone, whereas the mutation of Phe160 and Leu447 changed the IC50 values for two inhibitors. Thereby amino acids in the outward-facing conformation of rOCT1 could be identified that interact with structurally different inhibitors and probably also with different substrates.
For β- d -glucosylisophosphoramide mustard (β- d -Glc-IPM), a new alkylating drug in which isophosphoramide mustard is stabilized, a higher selectivity and lower myelotoxicity was observed than for the currently used cytostatic ifosfamide. Because β- d -Glc-IPM is hydrophilic and does not diffuse passively through the lipid bilayer, we investigated whether a transporter may be involved in the cellular uptake. A variety of cloned Na + -sugar cotransporters were expressed in Xenopus oocytes, and uptake measurements were performed. By tracer uptake and electrical measurements it was found that β- d -Glc-IPM was transported by the low-affinity Na + - d -glucose cotransporter SAAT1, which had been cloned from pig and is also expressed in humans. At membrane potentials between −50 and −150 mV, a 10-fold higher substrate affinity ( K m ≈ 0.25 mM) and a 10-fold lower V max value were estimated for β- d -Glc-IPM transport than for the transport of d -glucose or methyl-α- d -glucopyranoside (AMG). Transport of β- d -Glc-IPM and glucose by SAAT1 is apparently performed by the same mechanism because similar sodium dependence, dependence on membrane potential, electrogenicity, and phlorizin inhibition were determined for β- d -Glc-IPM, d -glucose, and AMG. Transcription of human SAAT1 was demonstrated in various human carcinomas and tumor cell lines. In one of these, the human carcinoma cell line T84, phlorizin inhibitable uptake of β- d -Glc-IPM was demonstrated with substrate saturation and an apparent K m of 0.4 mM. The data suggest that the Na + - d -glucose cotransporter SAAT1 transports β- d -Glc-IPM into human tumor cells and may accumulate the drug in the cells. They provide an example for drug targeting by employing a plasma membrane transporter.
We have shown previously that Leu447 and Gln448 in the transmembrane helix (TMH) 10 of rat organic cation transporter rOCT1 are critical for inhibition of cation uptake by corticosterone. Here, we tested whether the affinity of corticosterone is different when applied from the extracellular or intracellular side. The affinity of corticosterone was determined by measuring the inhibition of currents induced by tetraethylammonium+ (TEA+) in Xenopus laevis oocytes expressing rOCT1. Either corticosterone and TEA+ were added to the bath simultaneously or the oocytes were preincubated with corticosterone, washed, and TEA+-induced currents were determined subsequently. In mutant L447Y, Ki values for extracellular and intracellular corticosterone were decreased, whereas in mutant Q448E, only the Ki for intracellular corticosterone was changed. Modeling of the interaction of corticosterone with rOCT1 in the inward- or outward-facing conformation predicted direct binding to Leu447, Phe160 (TMH2), Trp218 (TMH4), Arg440 (TMH10), and Asp475 (TM11) from both sides. In mutant F160A, affinities for extracellular and intracellular corticosterone were increased, whereas maximal inhibition was reduced in W218F and R440K. In stably transfected epithelial cells, the affinities for inhibition of 1-methyl-4-phenyl-pyridinium+ (MPP+) uptake by extracellular and intracellular corticosterone were decreased when Asp475 was replaced by glutamate. In mutants F160A, W218Y, R440K, and L447F, the affinities for MPP+ uptake were changed, and in mutant D475E, the affinity for TEA+ uptake was changed. The data suggest that Phe160, Trp218, Arg440, Leu447, and Asp475 are located within an innermost cavity of the binding cleft that is alternatingly exposed to the extracellular or intracellular side during substrate transport.
To elucidate the molecular mechanisms underlying stimulation of rat organic cation transporter type 1 (rOCT1) by protein kinase C (PKC) activation, functional properties and regulation of rOCT1 stably expressed in HEK293 cells after site-directed mutagenesis of putative PKC phosphorylation-sites were compared with wild-type (WT) rOCT1 using microfluorometric measurements with the fluorescence organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+). Either substitutions of single (S286A, S292A, T296A, S328A, and T550A) or of all five PKC-sites (5x-PKC) with alanine suppressed PKC-induced stimulation of ASP+ uptake, whereas regulation by p56 lck tyrosine kinase was conserved in all mutants. Remarkably, the apparent affinities for TEA+, TPA+, and quinine were changed differently in each mutant (EC50 in WT, S286A, S292A, T296A, S328A, T550A, and 5x-PKC in μmol: TEA+: 105, 153, 56, 1135, 484, 498, 518; TPA+: 0.1, 2.1, 0.3, 1.0, 43, 0.3, 2.2; quinine: 1.5, 3.0, 2.5, 4.8, 81, 7.6, 8.9, respectively). After mutations, no effects of PKC activation on apparent affinity of rOCT1 for these substrates could be detected, in contrast to what was observed in WT. PKC activation had no significant effect on rOCT1 trafficking from intracellular pools to the cell membrane. Substitution of all PKC sites suppressed PKC-induced phosphorylation of rOCT1. In conclusion, it was found that the presence of all five potential PKC phosphorylation sites is necessary for the PKC-induced stimulation of rOCT1. The different effects on the EC50 values by the different mutations suggest that the large intracellular loop participates in building the substrate binding pocket of rOCT1 or specifically modulates its structure.
The rat organic cation transporter 2 (rOCT2) was expressed in Xenopus laevis oocytes and cation-induced outward and inward currents were measured in whole cells and giant patches using voltage clamp techniques. Tetrabutylammonium (TBuA) and corticosterone were identified as nontransported inhibitors that bind to the substrate binding site of rOCT2. They inhibited cation-induced currents from both membrane sides. Increased substrate concentrations could partially overcome the inhibition. At 0 mV, the affinity of TBuA from the extracellular side compared with the intracellular side of the membrane was 4-fold higher, whereas the affinity of corticosterone was 20-fold lower. The data suggest that the substrate binding site of rOCT2 is like a pocket containing overlapping binding domains for ligands. These binding domains may undergo separate structural changes. From the extracellular surface, the affinity for uncharged corticosterone was increased by making membrane potential more negative. This implies potential-dependent structural changes in the extracellular binding pocket and existence of a voltage sensor. Interestingly, at 0 mV, an 18-fold higher affinity was determined for trans-inhibition of choline efflux by corticosterone compared with cis-inhibition of choline uptake. This suggests an additional high affinity-conformation of the empty outwardly oriented substrate binding pocket. A model is proposed that describes how substrates and inhibitors might interact with rOCT2. The data provide a theoretical basis to understand drug-drug interactions at polyspecific transporters for organic cations.