Significance Climate change and air pollution caused by fossil-energy-related CO 2 and NO x emissions is a capstone societal issue. A critical barrier to an international treaty aimed toward controlling emissions is the inability to verify inventories and reduction of emissions claimed by individual nations following implementation of new technologies. We demonstrate for the first time, to our knowledge, that simultaneous remote observations of CO 2 , NO 2 , and CO regional column enhancements can be made with high fidelity and frequency. These can then be used to identify emissions from power plants and to distinguish them from other sources. Our findings represent a significant advancement in remote sensing monitoring methodology and can be used to develop an enforceable, transparent, and equitable climate treaty.
<p>Semi-arid ecosystems have been recognized as an important driver of interannual variability (IAV) in the growth rate of atmospheric CO2. However, the importance of these ecosystems for IAV in gross primary productivity (GPP) and net ecosystem exchange (NEE) over North America is not well characterized. In this study, we examine IAV over temperate North America using NEE constrained by surface-based and space-based atmospheric CO2 measurements over 2010&#8211;2015 and upscaled GPP from FluxSat over 2001&#8211;2017. We show that the arid west of North America provides a larger contribution to IAV in GPP and NEE than the more productive eastern half of North America. This occurs because flux anomalies in western North America are temporally coherent across the growing season leading to an amplification of GPP and NEE for wet years. In contrast, IAV in eastern North America shows seasonal compensation effects, wherein positive anomalies during April&#8211;June are compensated for by negative anomalies during July&#8211;September. </p>
Abstract Clouds can modify terrestrial productivity by reducing total surface radiation and increasing diffuse radiation, which may be more evenly distributed through plant canopies and increase ecosystem carbon uptake (the “diffuse fertilization effect”). Previous work at ecosystem-level observational towers demonstrated that diffuse photosynthetically active radiation (PAR; 400–700 nm) increases with cloud optical thickness (COT) until a COT of approximately 10, defined here as the “low-COT regime.” To identify whether the low-COT regime also influences carbon uptake on broader spatial and longer temporal time scales, we use global, monthly data to investigate the influence of COT on carbon uptake in three land-cover types: shrublands, forests, and croplands. While there are limitations in global gross primary production (GPP) products, global COT data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reveal that during the growing season tropical and subtropical regions more frequently experience a monthly low-COT regime (>20% of the time) than other regions of the globe. Contrary to ecosystem-level studies, comparisons of monthly COT with monthly satellite-derived solar-induced chlorophyll fluorescence and modeled GPP indicate that, although carbon uptake generally increases with COT under the low-COT regime, the correlations between COT and carbon uptake are insignificant (p > 0.05) in shrublands, forests, and croplands at regional scales. When scaled globally, vegetated regions under the low-COT regime account for only 4.9% of global mean annual GPP, suggesting that clouds and their diffuse fertilization effect become less significant drivers of terrestrial carbon uptake at broader spatial and temporal scales.
Across temperate North America, interannual variability (IAV) in gross primary production (GPP) and net ecosystem exchange (NEE) and their relationship with environmental drivers are poorly understood. Here, we examine IAV in GPP and NEE and their relationship to environmental drivers using two state-of-the-science flux products: NEE constrained by surface and space-based atmospheric CO
Abstract Global observations of solar‐induced chlorophyll fluorescence (SIF) are available from multiple satellite platforms, and SIF is increasingly used as a proxy for photosynthetic activity and ecosystem productivity. Because the relationship between SIF and gross primary productivity (GPP) depends on a variety of factors including ecosystem type and environmental conditions, it is necessary to study SIF observations across various spatiotemporal scales and ecosystems. To explore how SIF signals relate to productivity over a temperate deciduous forest, we deployed a PhotoSpec spectrometer system at the University of Michigan Biological Station AmeriFlux site (US‐UMB) in the northern Lower Peninsula of Michigan during the 2018 and 2019 growing seasons. We found that SIF correlated with GPP across diurnal and seasonal cycles ( R 2 = 0.61 and 0.64 for 90‐min‐ and daily‐averaged data), but that SIF signals were more strongly related to downwelling radiation than GPP ( R 2 = 0.91 for daily‐averaged data). The dependence of SIF on radiation obscured the impact of intraseasonal drought in the SIF timeseries, but drought stress was apparent as a decrease in relative SIF, which exhibited a stronger correlation with GPP ( R 2 = 0.56) than other remotely sensed data over the drought period. These results highlight the potential of SIF for detecting stress‐induced losses in forest productivity. Additionally, we found that the red:far‐red SIF ratio did not exhibit a response to water stress‐induced losses in productivity, but was largely driven by seasonal and interannual changes in canopy structure, as well as by synoptic changes in downwelling radiation.