Current results do not provide conclusive evidence on the effect of BCG vaccination on COVID-19 alone or in combination with other factors. To address this limitation, in this study we used a citizen science initiative on the COVID-19 pandemic to collect data worldwide during 2 October 2020–30 October 2020 (1,233 individuals) in a structured way for analysing factors and characteristics of affected individuals in relation to BCG vaccination. For the first time, the results of our study suggested that vaccination with BCG may increase the risk for COVID-19 at certain age, particularly in individuals vaccinated at childhood. Childhood BCG vaccination increased the likelihood of being diagnosed with COVID-19 fivefold in COVID-19 low-incidence countries and threefold in high-incidence countries. A reasonable explanation for this effect is the activation of certain innate immunity mechanisms associated with inflammatory reactions. These factors should be considered when analysing the risks associated with this global pandemic.
During the past decade, a large number of cell-based medicinal products have been tested in clinical trials for the treatment of various diseases and tissue defects. However, licensed products and those approaching marketing authorization are still few. One major area of challenge is the manufacturing and quality development of these complex products, for which significant manipulation of cells might be required. While the paradigms of quality, safety and efficacy must apply also to these innovative products, their demonstration may be demanding. Demonstration of comparability between production processes and batches may be difficult for cell-based medicinal products. Thus, the development should be built around a well-controlled manufacturing process and a qualified product to guarantee reproducible data from nonclinical and clinical studies.
Spinal cord injury (SCI) often results in a sudden, devastating loss of function. SCI is particularly challenging for the pediatric and adolescent populations who, under normal circumstances, are still achieving developmental milestones, but followin
In this study, we describe the activation of melanogenesis by selective vacuolar type H + ‐ATPase inhibitors (bafilomycin A1 and concanamycin A) in amelanotic human and mouse melanoma cells which express tyrosinase but show no melanogenesis. Addition of the inhibitors activated tyrosinase within 4 h, and by 24 h the cells contained measurable amounts of melanin. These effects were not inhibited by cycloheximide (2 μg/ml) which is consistent with a post‐translational mechanism of activation. Our findings suggest that melanosomal pH could be an important and dynamic factor in the control of melanogenesis in mammalian cells.
Important knowledge about the role of vitamin A in vertebrate heart development has been obtained using the vitamin A-deficient avian in ovo model which enables the in vivo examination of very early stages of vertebrate heart morphogenesis. These studies have revealed the critical role of the vitamin A-active form, retinoic acid (RA) in the regulation of several developmental genes, including the important growth regulatory factor, transforming growth factor-beta2 (TGFβ2), involved in early events of heart morphogenesis. However, this in ovo model is not readily available for elucidating details of molecular mechanisms determining RA activity, thus limiting further examination of RA-regulated early heart morphogenesis. In order to obtain insights into RA-regulated gene expression during these early events, a reliable in vitro model is needed. Here we describe a cell culture that closely reproduces the in ovo observed regulatory effects of RA on TGFβ2 and on several developmental genes linked to TGFβ signaling during heart morphogenesis. We have developed an avian heart forming region (HFR) cell based in vitro model that displays the characteristics associated with vertebrate early heart morphogenesis, i.e. the expression of Nkx2.5 and GATA4, the cardiogenesis genes, of vascular endothelial growth factor (VEGF-A), the vasculogenesis gene and of fibronectin (FN1), an essential component in building the heart, and the expression of the multifunctional genes TGFβ2 and neogenin (NEO). Importantly, we established that the HFR cell culture is a valid model to study RA-regulated molecular events during heart morphogenesis and that the expression of TGFβ2 as well as the expression of several TGFβ2-linked developmental genes is regulated by RA. Our findings reported here offer a biologically relevant experimental in vitro system for the elucidation of RA-regulated expression of TGFβ2 and other genes involved in vertebrate early cardiovascular morphogenesis.
Background: Conifer needle polyprenols are known to improve muscle strength in rats and also act protectively in patients suffering from statin-induced myopathies (Jansone et al., 2016, Latkovskis et al., 2016), but little is known about polyprenols in relation to gene expression in vitro.