The retroviral Gag protein is the central player in the process of virion assembly at the plasma membrane, and is sufficient to induce the formation and release of virus-like particles. Recent evidence suggests that Gag may co-opt the host cell's endocytic machinery to facilitate retroviral assembly and release. A search for novel partners interacting with the Gag protein of the Moloney murine leukemia virus (Mo-MuLV) via the yeast two-hybrid protein-protein interaction assay resulted in the identification of endophilin 2, a component of the machinery involved in clathrin-mediated endocytosis. We demonstrate that endophilin interacts with the matrix or MA domain of the Gag protein of Mo-MuLV, but not of human immunodeficiency virus, HIV. Both exogenously expressed and endogenous endophilin are incorporated into Mo-MuLV viral particles. Titration experiments suggest that the binding sites for inclusion of endophilin into viral particles are limited and saturable. Knock-down of endophilin with small interfering RNA (siRNA) had no effect on virion production, but overexpression of endophilin and, to a lesser extent, of several fragments of the protein, result in inhibition of Mo-MuLV virion production, but not of HIV virion production. This study shows that endophilins interact with Mo-MuLV Gag and affect virion production. The findings imply that endophilin is another component of the large complex that is hijacked by retroviruses to promote virion production.
Abstract Combining the molecular specificity of fluorescent probes with three-dimensional (3D) imaging at nanoscale resolution is critical for investigating the spatial organization and interactions of cellular organelles and protein complexes. We present a super-resolution light microscope that enables simultaneous multicolor imaging of whole mammalian cells at ~20 nm 3D resolution. We show its power for cell biology research with fluorescence images that resolved the highly convoluted Golgi apparatus and the close contacts between the endoplasmic reticulum and the plasma membrane, structures that have traditionally been the imaging realm of electron microscopy. One Sentence Summary Complex cellular structures previously only resolved by electron microscopy can now be imaged in multiple colors by 4Pi-SMS.
The cellular and subcellular distribution of the regulatory subunit RII of cAMP-dependent protein kinase was studied by light and electron microscopy immunocytochemistry in tissue sections from rat brain and in primary cultures of brain cells. RII immunoreactivity was present in most neurons, although at variable concentration. In addition, RII was also detectable in other cell types including glia, neuroepithelial cells, and cells of mesenchymal origin. In the cell cytoplasm, RII immunoreactivity was concentrated at certain sites. An accumulation of RII immunoreactivity was found in all RII-positive cells at the Golgi area, precisely at a region directly adjacent to one of the two major faces of the Golgi complex. RII was also highly concentrated in some microtubule-rich cell processes such as cilia and neuronal dendrites, but was below detectability in most axons. In neurons, its concentration in dendrites is consistent with the previously demonstrated high affinity interaction between RII and the dendritic microtubule-associated protein 2. In addition, RII was accumulated at basal bodies of cilia and at centrosomes, i.e., sites known to act as microtubule organizers. RII-labeled centrosomes, however, were visible only in cells where the Golgi complex had a pericentrosomal organization, and not in cells where the Golgi complex was perinuclear such as in neurons and glia in situ. We hypothesize that centrosomal RII is bound to the pericentriolar microtubule-organizing material and that this material remains associated with the trans region of the Golgi complex when the latter is no longer associated with the centrosome. Our results suggest a key but not obligatory role of cAMP in the Golgi-centrosomal area, the headquarters of cell polarity, mobility and intracellular traffic, and in the function of a subpopulation of microtubules.
Fast synaptic transmission is mediated by the secretion from nerve terminals of small nonpeptide chemical messengers, called neurotransmitters, which are stored in a specialized secretory organelle, the synaptic vesicle (De Camilli and Jahn 1990). Depolarization of the nerve terminal plasma membrane through an action potential leads to an influx of calcium ions into the cytosol that triggers the exocytosis of synaptic vesicles and the release of their contents. Rapidly after exocytosis, the synaptic vesicle membranes are internalized and reutilized for the formation of new synaptic vesicles that are reloaded with neurotransmitters from the cytosol (McPherson and De Camilli 1994). Several lines of evidence favor the view that this recycling process is mediated, at least in part (Fesce et al. 1994; Mundigl and De Camilli 1994), by the ubiquitous pathway of endocytosis that uses clathrin-coated vesicles. First, clathrin is highly concentrated in nerve terminals (Takei et al. 1995), and a morphological...
The distribution of two synaptic vesicle-specific phosphoproteins, synaptophysin and synapsin I, during intense quantal secretion was studied by applying an immunogold labeling technique to ultrathin frozen sections. In nerve-muscle preparations treated for 1 h with a low dose of alpha-latrotoxin in the absence of extracellular Ca2+ (a condition under which nerve terminals are depleted of both quanta of neurotransmitter and synaptic vesicles), the immunolabeling for both proteins was distributed along the axolemma. These findings indicate that, in the presence of a block of endocytosis, exocytosis leads to the permanent incorporation of the synaptic vesicle membrane into the axolemma and suggest that, under this condition, at least some of the synapsin I molecules remain associated with the vesicle membrane after fusion. When the same dose of alpha-latrotoxin was applied in the presence of extracellular Ca2+, the immunoreactivity patterns resembled those obtained in resting preparations: immunogold particles were selectively associated with the membrane of synaptic vesicles, whereas the axolemma was virtually unlabeled. Under this condition an active recycling of both quanta of neurotransmitter and vesicles operates. These findings indicate that the retrieval of components of the synaptic vesicle membrane is an efficient process that does not involve extensive intermixing between molecular components of the vesicle and plasma membrane, and show that synaptic vesicles that are rapidly recycling still have the bulk of synapsin I associated with their membrane.