The nucleotide sequence of gene 18 of bacteriophage T4 was determined by the Maxam-Gilbert method, partially aided by the dideoxy method. To confirm the deduced amino acid sequence of the tail sheath protein (gp18) that is encoded by gene 18, gp18 was extensively digested by trypsin or lysyl endopeptidase and subjected to reverse-phase high-performance liquid chromatography. Approximately 40 peptides, which cover 88% of the primary structure, were fractionated, the amino acid compositions were determined, and the corresponding sequences in DNA were identified. Furthermore, the amino acid sequences of 10 of the 40 peptides were determined by a gas phase protein sequencer, including N- and C-terminal sequences. Thus, the complete amino acid sequence of gp18, which consists of 658 amino acids with a molecular weight of 71,160, was determined.
Abstract A novel method useful for selective isolation of the C‐terminal peptide from a tryptic digestion mixture of a protein has been developed by taking advantage of a unique property of anhydrotrypsin, which has a strong specific affinity for the peptides containing arginine or lysine at their C‐termini. Briefly, peptides produced by tryptic digestion of a protein are fractionated by affinity chromatography on a column of immobilized anhydrotrypsin. The C‐terminal peptide is recovered in a breakthrough fraction, which the remainders are adsorbed on the column (unless the protein ends in arginine or lysine). The breakthrough fraction is then subjected to reversed‐phase high‐perfomance liquid chromatography in order to purify the C‐terminal peptide. Using this method, we have successfully isolated the C‐terminal peptides from tryptic digests of the sheath protein (gp 18) and the tube protein (gp 19) of bacteriophage T4. The analytical results on these peptides, together with the information on the N‐terminal structures of the original proteins and on the nucleotide sequences of genes 18 and 19, allowed us to establish the complete primary structures of the two proteins.
Wilson's disease, an autosomal recessive disorder, is characterized by the excessive accumulation of copper in the liver. WND (ATP7B) gene, which encodes a putative copper transporting P-type ATPase, is defective in the patients. To investigate the in vivo function of WND protein as well as its intracellular localization, WNDcDNA was introduced to the Long-Evans Cinnamon rat, known as a rodent model for Wilson's disease, by recombinant adenovirus-mediated gene delivery. An immunofluorescent study and a subcellular fractionation study revealed the transgene expression in liver and its localization to the Golgi apparatus. Moreover, since the synthesis of holoceruloplasmin is disturbed in the Long-Evans Cinnamon rat, the plasma level of holoceruloplasmin, oxidase-active and copper-bound form, was examined to evaluate the function of WND protein with respect to the copper transport. Consequently, the appearance of holoceruloplasmin in plasma was confirmed by Western blot analysis and plasma measurements for the oxidase activity and the copper content. These findings indicate that introduced WND protein may function in the copper transport coupled with the synthesis of ceruloplasmin and that the Golgi apparatus is the likely site for WND protein to manifest its function.