Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers’ rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
A reversed-phase HPLC optimization strategy is presented for investigating the separation and retention behavior of aflatoxin B1, B2, G1, G2, ochratoxin A and zearalenone, simultaneously. A fractional factorial design (FFD) was used to screen the significance effect of seven independent variables on chromatographic responses. The independent variables used were: (X1) column oven temperature (20–40°C), (X2) flow rate (0.8–1.2 ml/min), (X3) acid concentration in aqueous phase (0–2%), (X4) organic solvent percentage at the beginning (40–50%), and (X5) at the end (50–60%) of the gradient mobile phase, as well as (X6) ratio of methanol/acetonitrile at the beginning (1–4) and (X7) at the end (0–1) of gradient mobile phase. Responses of chromatographic analysis were resolution of mycotoxin peaks and HPLC run time. A central composite design (CCD) using response surface methodology (RSM) was then carried out for optimization of the most significant factors by multiple regression models for response variables. The proposed optimal method using 40°C oven temperature, 1 ml/min flow rate, 0.1% acetic acid concentration in aqueous phase, 41% organic phase (beginning), 60% organic phase (end), 1.92 ratio of methanol to acetonitrile (beginning) and 0.2 ratio (end) for X1–X7, respectively, showed good prediction ability between the experimental data and predictive values throughout the studied parameter space. Finally, the optimized method was validated by measuring the linearity, sensitivity, accuracy and precision parameters, and has been applied successfully to the analysis of spiked cereal samples.
Economic development has driven the Malaysian food consumption trend to move from basic staple to non-traditional staples – wheat-based, meat, fruit and vegetable items. More affluent Malaysians are also prompted to dine away from home. This paper attempts to acknowledge and grasp the changes in the Malaysian food consumption trend with deliberation for turning relevant issues into opportunities. Income, own price, relative prices, and demographic factors are the driving forces behind the changes in the Malaysian food consumption trend. Of the widening role of income growth, food demand has shifted toward high quality-differentiated characteristics – freshness, safety, texture, and appearance, and consumers are willing to pay for these quality characteristics. The essence of transforming these issues into opportunities is by responding to consumer expectations. An aligned market-led supply chain is proclaimed to offer differentiated and complex food products, which explicitly specifies the value creating activities via information sharing. The Malaysian agri-food supply chain players must also adopt value creation and delivery approach to produce food products that have sufficient value for customers who are willing to pay.