The phosphatidylinositol‐3‐kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently activated in HER2‐negative breast cancer and may play a role in taxane resistance. The phase IB/II TAKTIC trial (NCT01980277) has shown that combining a dual AKT and p70 ribosomal protein S6 kinase (p70S6K) inhibitor (LY2780301) taken orally with weekly paclitaxel in HER2‐negative advanced breast cancer is feasible, with preliminary evidence of efficacy. We wanted to explore whether circulating tumor DNA (ctDNA) may be a surrogate marker of treatment efficacy in this setting. Serial plasma samples were collected and cell‐free DNA was sequenced using low‐coverage whole‐genome sequencing, and analysis was completed with droplet digital polymerase chain reaction (PCR) for some patients with driver mutations. Baseline tumor fraction (TF) and TF after 7 weeks on treatment were compared to progression‐free survival (PFS) and the overall response rate. We also explored circulating copy number alterations associated with treatment failure. Of the 51 patients enrolled in the TAKTIC trial, at least one plasma sample was available for 44 cases (96 timepoints). All patients with tumor TP53 , PI3KCA, or AKT1 mutations harbored at least one of these alterations in plasma. TF at inclusion was correlated with PFS (6m‐PFS was 92% for ctDNAneg patients vs 68% for ctDNApos cases; hazard ratio [HR] = 3.45, 95% confidence interval [CI] [1.34–8.90], P = 0.007). ctDNA status at week 7 was not correlated with prognosis. Even though most circulating copy number alterations were conserved at disease progression, some genomic regions of interest were altered in post‐progression samples. In conclusion, ctDNA detection at baseline was associated with shorter PFS in patients included in the TAKTIC trial. Plasma‐based copy number analysis may help to identify alterations involved in resistance to treatment.
Objective Evidence points to a founder of the multifunctional CCN family, NOV/CCN3, as a circulating molecule involved in cardiac development, vascular homeostasis and inflammation. No data are available on the relationship between plasma NOV/CCN3 levels and cardiovascular risk factors in humans. This study investigated the possible relationship between plasma NOV levels and cardiovascular risk factors in humans. Methods NOV levels were measured in the plasma from 594 adults with a hyperlipidemia history and/or with lipid-lowering therapy and/or a body mass index (BMI) >30 kg/m2. Correlations were measured between NOV plasma levels and various parameters, including BMI, fat mass, and plasma triglycerides, cholesterol, glucose, and C-reactive protein. NOV expression was also evaluated in adipose tissue from obese patients and rodents and in primary cultures of adipocytes and macrophages. Results After full multivariate adjustment, we detected a strong positive correlation between plasma NOV and BMI (r = 0.36 p<0.0001) and fat mass (r = 0.33 p<0.0005). According to quintiles, this relationship appeared to be linear. NOV levels were also positively correlated with C-reactive protein but not with total cholesterol, LDL-C or blood glucose. In patients with drastic weight loss induced by Roux-en-Y bariatric surgery, circulating NOV levels decreased by 28% (p<0.02) and 48% (p<0.0001) after 3 and 6 months, respectively, following surgery. In adipose tissue from obese patients, and in human primary cultures NOV protein was detected in adipocytes and macrophages. In mice fed a high fat diet NOV plasma levels and its expression in adipose tissue were also significantly increased compared to controls fed a standard diet. Conclusion Our results strongly suggest that in obese humans and mice plasma NOV levels positively correlated with NOV expression in adipose tissue, and support a possible contribution of NOV to obesity-related inflammation.