Supplementary Figure Legends 1-9, Methods from Blocking EphB1 Receptor Forward Signaling in Spinal Cord Relieves Bone Cancer Pain and Rescues Analgesic Effect of Morphine Treatment in Rodents
Abstract To explore roles for ephrin‐B/EphB signaling in cortical interneurons, we previously generated ephrin‐B ( Efnb1/b2/b3 ) conditional triple mutant ( TM lz ) mice using a Dlx1/2.Cre inhibitory neuron driver and green fluorescent protein ( GFP ) reporters for the two main inhibitory interneuron groups distinguished by expression of either glutamic acid decarboxylase 1 ( GAD 1; GAD 67‐ GFP ) or 2 ( GAD 2; GAD 65‐ GFP ). This work showed a general involvement of ephrin‐B in migration and population of interneurons into the embryonic neocortex. We now determined whether specific interneurons are selectively affected in the adult brains of TM lz .Cre mice by immunostaining with antibodies that identify the different subtypes. The results indicate that GAD 67‐ GFP ‐expressing interneurons that also express parvalbumin ( PV ), calretinin ( CR ) and, to a lesser extent, somatostatin ( SST ) and Reelin (Rln) were significantly reduced in the cortex and hippocampal CA 1 region in TM lz .Cre mutant mice. Neuropeptide Y ( NPY ) interneurons that also express GAD 67‐ GFP were reduced in the hippocampal CA 1 region, but much less so in the cortex, although these cells exhibited abnormal cortical layering. In GAD 65‐ GFP ‐expressing interneurons, CR subtypes were reduced in both cortex and hippocampal CA 1 region, whereas Rln interneurons were reduced exclusively in hippocampus, and the numbers of NPY and vasoactive intestinal polypeptide ( VIP ) subtypes appeared normal. PV and CR subtype interneurons in TM lz .Cre mice also exhibited reductions in their perisomatic area, suggesting abnormalities in dendritic/axonal complexity. Altogether, our data indicate that ephrin‐B expression within forebrain interneurons is required in specific subtypes for their normal population, cortical layering and elaboration of cell processes.
Bidirectional signalling is regarded as a notable hallmark of the Eph-ephrin signalling system: Eph-dependent forward signalling in Eph-expressing cells and ephrin-dependent reverse signalling in Ephrin-expressing cells. The notion of ephrin-dependent reverse signalling derives from genetic experiments utilizing mice carrying mutations in the intracellular region of ephrinBs. Here we show that EphB4-dependent forward signalling regulates lymphatic valve development, a process previously thought to be regulated by ephrinB2-dependent reverse signalling. We develop antibodies that selectively target EphB4 and ephrinB2. We find that mice bearing genetically altered cytoplasmic region of ephrinB2 have significantly altered EphB4-dependent forward signalling. Selective inhibition of EphB4 using a functional blocking antibody results in defective lymphatic valve development. Furthermore, a chemical genetic approach is used to unequivocally show that the kinase activity of EphB4 is essential for lymphatic valve development.
We report our molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type lb 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.
Erythropoietin producing hepatocellular (Eph)-Eph receptor interacting (Ephrin) receptor-ligand signaling has been implicated in the development of tissue fibrosis, though it has not been well defined in the kidney. We detected substantial up-regulation of expression and phosphorylation of the EphB2 receptor tyrosine kinase in fibrotic kidney tissue obtained both from mice subjected to the unilateral renal ischemia-reperfusion (IR) model at 14 days and in patients suffering from chronic kidney disease (CKD). Knockout (KO) mice lacking EphB2 expression exhibited a normal renal structure and function, indicating no major role for this receptor in kidney development or action. Although IR injury is well-known to cause tissue damage, fibrosis, and renal dysfunction, we found that kidneys from EphB2KO mice showed much less renal tubular injury and retained a more preserved renal function. IR-injured kidneys from EphB2 KOs exhibited greatly reduced fibrosis and inflammation compared with injured wildtype (WT) littermates, and this correlated with a significant reduction in renal expression of profibrotic molecules, inflammatory cytokines, NADPH oxidases, and markers for cell proliferation, tubular epithelial-to-mesenchymal transition (EMT), myofibroblast activation, and apoptosis. A panel of 760 fibrosis-associated genes were further assessed, revealing that 506 genes in WT mouse kidney following IR injury changed their expression. However, 70.9% of those genes were back to or close to normal in expression when EphB2 was deleted. These data indicate that endogenous EphB2 expression and signaling are abnormally activated after kidney injury and subsequently contribute to the development of renal fibrosis via regulation of multiple profibrotic pathways.
Excitatory synapses in the CNS are formed on both dendritic spines and shafts. Recent studies show that the density of shaft synapses may be independently regulated by behavioral learning and the induction of synaptic plasticity, suggesting that distinct mechanisms are involved in regulating these two types of synapses. Although the molecular mechanisms underlying spinogenesis and spine synapse formation are being delineated, those regulating shaft synapses are still unknown. Here, we show that postsynaptic ephrinB3 expression promotes the formation of glutamatergic synapses specifically on the shafts, not on spines. Reducing or increasing postsynaptic ephrinB3 expression selectively decreases or increases shaft synapse density, respectively. In the ephrinB3 knock-out mouse, although spine synapses are normal, shaft synapse formation is reduced in the hippocampus. Overexpression of glutamate receptor-interacting protein 1 (GRIP1) rescues ephrinB3 knockdown phenotype by restoring shaft synapse density. GRIP1 knockdown prevents the increase in shaft synapse density induced by ephrinB3 overexpression. Together, our results reveal a novel mechanism for independent modulation of shaft synapses through ephrinB3 reverse signaling.
The mammalian Mat1 protein has been implicated in cell cycle regulation as part of the Cdk activating kinase (CAK), and in regulation of transcription as a subunit of transcription factor TFIIH. To address the role of Mat1 in vivo, we have used a Cre/loxP system to conditionally ablate Mat1 in adult mitotic and post-mitotic lineages. We found that the mitotic cells of the germ lineage died rapidly upon disruption of Mat1 indicating an absolute requirement of Mat1 in these cells. By contrast, post-mitotic myelinating Schwann cells were able to attain a mature myelinated phenotype in the absence of Mat1. Moreover, mutant animals did not show morphological or physiological signs of Schwann cell dysfunction into early adulthood. Beyond 3 months of age, however, myelinated Schwann cells in the sciatic nerves acquired a severe hypomyelinating morphology with alterations ranging from cells undergoing degeneration to completely denuded axons. This phenotype was coupled to extensive proliferation and remyelination that our evidence suggests was undertaken by the non-myelinated Schwann cell pool. These results indicate that Mat1 is not essential for the transcriptional program underlying the myelination of peripheral axons by Schwann cells and suggest that the function of Mat1 in RNA polymerase II-mediated transcription in these cells is regulatory rather than essential.