Native skin consists mainly of epidermal and dermal layers. Here in this work, we have constructed an artificial skin scaffold mimicking the bilayered structure of the native skin using electrospinning technique for wound healing. Polyurethane (PU) and Gelatin (Ge) were used for developing the epidermal layer and the dermal layer respectively. Ciprofloxacin HCl (Cip. HCl) a fluoroquinolone antibiotic was incorporated in both the layers for rapid wound healing. Morphology of the skin scaffold was studied using scanning electron microscopy (SEM) analysis and the chemical characterization was performed using FTIR spectroscopy. Water vapor transmission rate test and oxygen transmission rate test was conducted to evaluate the barrier properties of the scaffold. Thermal stability of the skin scaffold was evaluated using DSC and TGA while an understanding of the exudate absorbing capacity and degradation behavior of the scaffold was obtained from water absorption studies and in vitro degradation studies respectively. In vitro drug release study and drug release kinetics was explored to understand the release mechanism of Cip. HCl from the scaffold. Both the layers showed nano and micropores when analyzed using SEM. The dermal layer showed comparatively more water absorption capacity and degradation, hence providing a moist environment for the wound. The skin scaffold was permeable to water vapor and oxygen, and hence will speed up the process of wound healing. In vitro release for Cip. HCl showed a non-Fickian swelling type release with zero-order kinetics. Disk diffusion test conducted on the bilayers proved the antibacterial activity of the membrane. Hence the electrospun PU-Ge skin scaffold containing Cip. HCl is a promising candidate among modern day wound healing materials.
The study focuses on developing hyaluronic acid (1200 kilo Dalton) hydrogels for cartilage regeneration. In spite of being highly biocompatible; a large amount of water absorption and easily degrading nature restricts the use of hyaluronic acid in the field of tissue regeneration. This can be rectified by crosslinking hyaluronic acid with a crosslinking agent such as divinyl sulfone; which results in a biocompatible hydrogel with superior rheological properties. Different amounts of divinyl sulfone have been used for crosslinking hyaluronic acid to get three types of hydrogels with differing properties. Swelling studies, rheology analysis, enzymatic degradation and scanning electron microscopic analysis were conducted on all the different types of hydrogels prepared. Viscoelastic properties of the hydrogel were analyzed so that a hydrogel with better elastic property and stability is obtained. Scanning electron microscopy was used to study the morphology of the HA hydrogels. The cytotoxicity testing was conducted to prove the non-toxic nature of the hydrogels and cell culture studies using adipose mesenchymal stem cells showed better adhesion and proliferation properties in all the three hydrogels. Thus hyaluronic acid hydrogel makes a promising material for cartilage regeneration.