Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Conformationally restricted peptidomimetics comprising eight stereoisomeric scaffolds with three-dimensional structural diversity were designed based on the structural features of cyclopropane, that is, cyclopropylic strain, which mimic wide-ranging tetrapeptide conformations covering β-turns through β-strands. Stereoselective synthesis of the designed peptidomimetics led to the identification of nonpeptidic melanocortin-4 receptor ligands.
The l'a-phenylselenouridine derivative (4) was successfully synthesized via enolization at the 1'position of the 3',5'-0-TIPDS-2'-ketouridine (1).After the introduction of a vinylsilyl tether as an intramolecular radical acceptor at the 2'-hydroxy group of 4, its atom-transfer radical cyclization reaction, followed by the treatment with TBAF gave 1'a-vinyluridine derivative (10).Using this procedure, 1'a-vinyluridine (11) and -cytidine (14) were successfully synthesized.
The stereochemical diversity-oriented conformational restriction strategy can be an efficient method for developing specific ligands for drug target proteins, especially in cases where neither the bioactive conformation nor the pharmacophore is known. To develop potent H3 and H4 receptor antagonists, a series of conformationally restricted analogues of histamine with a chiral cis- or trans-cyclopropane structure were designed on the basis of this strategy. These target compounds with stereochemical diversity were synthesized from the versatile chiral cyclopropane units (1S,2R)- and (1R,2R)-2-(tert-butyldiphenylsilyloxy)methyl-1-formylcyclopropane (6 and 7, respectively) or their enantiomers ent-6 and ent-7. Pharmacological profiles of these conformationally restricted analogues were shown to be different depending on the cyclopropane backbones. Among the analogues, (1R,2S)-2-[2-(4-chlorobenzylamino)ethyl]-1-(1H-imidazol-4-yl)cyclopropane (11a) with the (1R)-trans-cyclopropane structure has remarkable antagonistic activity to both the H3 (Ki = 8.4 nM) and H4 (Ki = 7.6 nM) receptors. The enantiomer of 11a, i.e., ent-11a, with the (1S)-trans-cyclopropane structure turned out to be a highly potent and selective H3 receptor antagonist with a Ki of 3.6 nM. Conversely, (1R,2R)-2-[(4-chlorobenzylamino)methyl]-1-(1H-imidazol-4-yl)cyclopropane (10a) with the (1R)-trans structure was selective for the H4 receptor (Ki = 118 nM) compared to the H3 receptor (Ki > 103 nM). Thus, a variety of compounds with different pharmacological profiles have been developed. These results show that when the structure of the target protein is unknown, the stereochemical diversity-oriented approach can be a powerful strategy in medicinal chemical studies.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
To test the hypothesis that inhibitors of human concentrative nucleoside transporter 2 (hCNT2) suppress increases in serum urate levels derived from dietary purines, we previously identified adenosine derivative 1 as a potent hCNT2 inhibitor (IC50 = 0.64 μM), but further study was hampered due to its poor solubility. Here we describe the results of subsequent research to identify more soluble and more potent hCNT2 inhibitors, leading to the discovery of the benzimidazole nucleoside 22, which is the most potent hCNT2 inhibitor (IC50 = 0.062 μM) reported to date. Compound 22 significantly suppressed the increase in plasma uric acid levels after oral administration of purine nucleosides in rats. Because compound 22 was poorly absorbed orally in rats (F = 0.51%), its pharmacologic action was mostly limited to the gastrointestinal tract. These findings suggest that inhibition of hCNT2 in the gastrointestinal tract can be a promising approach for the treatment of hyperuricemia.
Resolvins (Rvs) are highly potent anti-inflammatory lipid mediators that are chemically and biologically unstable because of their polyunsaturated structures. To address this issue, we designed benzene congeners of RvE2, i.e., o-, m-, and p-BZ-RvE2s, as stable equivalents of RvE2 by replacing the unstable skipped diene moiety with a benzene ring on the basis of computational conformation studies and synthesized these congeners via a short common route through two Stille couplings. o-BZ-RvE2 exhibited more potent anti-inflammatory activity and much higher metabolic stability than RvE2. Thus, o-BZ-RvE2 was identified as a stable equivalent of RvE2, which is useful as a lead for anti-inflammatory drugs with a new mechanism of action as well as a biotool for investigating RvE2-mediated inflammation resolving pathways.
The synthesis of cyclic ADP-carbocyclic-ribose (cADPcR, 4) designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, was achieved using as the key step a condensation reaction with the phenylthiophosphate-type substrate 14 to form an intramolecular pyrophosphate linkage. The N-1-carbocyclic-ribosyladenosine derivative 16 was prepared via the condensation between the imidazole nucleoside derivative 17, prepared from AICA-riboside (19), and the readily available optically active carbocyclic amine 18. Compound 16 was then converted to the corresponding 5' '-phosphoryl-5'-phenylthiophosphate derivatives 14. Treatment of 14 with AgNO3 in the presence of molecular sieves (3 A) in pyridine at room temperature gave the desired cyclization product 32 in 93% yield, and subsequent acidic treatment provided the target cADPcR (4). This represents a general method for synthesizing biologically important cyclic nucleotides of this type. 1H NMR analysis of cADPcR suggested that its conformation in aqueous medium is similar to that of cADPR. cADPcR, unlike cADPR, was stable under neutral and acidic conditions, where under basic conditions, it formed the Dimroth-rearranged N6-cyclized product 34. cADPcR was also stable in rat brain membrane homogenate which has cADPR degradation activity. Furthermore, cADPcR was resistant to the hydrolysis by CD38 cADPR hydrolase, while cADPR was rapidly hydrolyzed under the same conditions. When cADPcR was injected into sea urchin eggs, it caused a significant release of Ca2+ in the cells, an effect considerably stronger than that of cADPR. Thus, cADPcR was identified as a stable mimic of cADPR.