Palmitoyl protein thioesterase (PPT) is the defective enzyme in infantile neuronal ceroid lipofuscinosis (INCL), which is a recessively inherited, progressive neurodegenerative disorder. We present here the cloning, chromosomal mapping, genomic structure, and the expression of the cDNA of mouse PPT. The mouse PPT gene spans >21 kb of genomic DNA and contains nine exons with a coding sequence of 918 bp. Fluorescence in situ hybridization to metaphase chromosomes localized the mouse PPT gene to the chromosome 4 conserved syntenic region with human chromosome 1p32 where the human PPT is located. PPT is expressed widely in a variety of mouse tissues. The mouse PPT cDNA is conserved highly with the human and rat PPT both at the nucleotide and amino acid sequence level. Transient expression of mouse PPT in COS-1 cells yielded a 38/36-kD differentially glycosylated polypeptide that was also secreted into culture media. Immunofluorescence analysis of transiently transfected HeLa cells indicated lysosomal localization of mouse PPT. Based on the high conservation of the gene and polypeptide structure as well as similar processing and intracellular localization, the function of PPT in mouse and human are likely to be very similar. [The sequence data described in this paper have been submitted to GenBank under accession no. AF071O25.]
Abstract Background Diffuse intrinsic pontine gliomas (DIPGs) have a dismal prognosis. Previously, diagnosis was based on a typical clinical presentation and magnetic resonance imaging findings. After the start of the era of biopsies, DIPGs bearing H3 K27 mutations have been reclassified into a novel entity, diffuse midline glioma, based on the presence of this molecular alteration. However, it is not well established how clinically diagnosed DIPG overlap with H3 K27‐mutated diffuse midline gliomas, and whether rare long‐term survivors also belong to this group. Methods We studied tumor samples obtained at diagnosis or upon autopsy from 23 children, including two long‐term survivors. Based on clinical, radiological, and histological findings, all tumors were previously diagnosed as DIPGs. All samples were analyzed for genetic alterations by next‐generation sequencing (NGS) and for protein expression by immunohistochemistry (IHC). Results H3 K27 was mutated in NGS or IHC in 20 patients, excluding both long‐term survivors. One of these long‐term survivors harbored a mutation in IDH1 , formerly considered to be an alteration absent in pediatric diffuse brainstem gliomas. Other altered genes in NGS included TP53 (10 patients), MET and PDGFRA (3 patients each), VEGFR and SMARCA4 (2 patients each), and PPARγ, PTEN and EGFR in 1 patient, respectively. IHC revealed cMYC expression in 15 of 24 (63%) of all samples, exclusively in the biopsies. Conclusions Eighty‐seven percent of the tumors formerly diagnosed as DIPGs could be reclassified as H3 K27‐mutated diffuse midline gliomas. Both long‐term survivors lacked this alteration. Contrary to former conceptions, IDH1 mutations may occur also in pediatric brainstem gliomas.
Myxoinflammatory fibroblastic sarcoma is a soft-tissue neoplasm most frequently found in the distal extremities of middle-aged adults. Most myxoinflammatory fibroblastic sarcoma are low-grade tumors with propensity for local recurrence after incomplete removal. We report a myxoinflammatory fibroblastic sarcoma which developed in the foot of a 41-year-old male and showed an exceptionally aggressive course with metastatic spread and fatal outcome within 16 months. We managed to establish a spontaneously transformed continuous cell line, called JU-PI, from a metastatic lesion. The JU-PI cells have a sub-tetraploid karyotype including the 1;10 chromosomal translocation and amplification of the proximal end of 3p; these features are considered genetic signatures of myxoinflammatory fibroblastic sarcoma. Both the primary tumor and the JU-PI cells showed nuclear expression of the TFE3 transcription factor but TFE3-activating chromosomal rearrangements were not found. To our knowledge, JU-PI is the first established myxoinflammatory fibroblastic sarcoma cell line. JU-PI cells offer a tool for investigating the molecular oncology of myxoinflammatory fibroblastic sarcoma.
Mutations in the CLN-1 and CLN-5 genes underlie the infantile, and Finnish variant of the late-infantile, neuronal ceroid lipofuscinoses, respectively. These disorders are characterized by a massive neuronal death early in childhood. We have studied mRNA and protein expression of CLN-1 and CLN-5 in embryonic human brains. The spatial and temporal distributions of CLN-1 and CLN-5 were similar in the embryonic human brain. Both genes are expressed at the beginning of cortical neurogenesis, and this expression increases as cortical development proceeds. In the developing cortical plate, expression is found in postmitotic migrating neuroblasts and neuroblasts that have completed migration. Expression was intense also in cells of the thalamus as well as in the future Purkinje cell layer of the cerebellum. These findings indicate that expression of CLN-1 and CLN-5 may be significant for development of a wide range of maturating neurons.
Mixed neuroendocrine-non-neuroendocrine neoplasms (MINEN) are rare tumors that consist of at least 30% of both neuroendocrine and non-neuroendocrine components. The data concerning the pathogenesis of MINEN suggest a monoclonal origin. We describe a spontaneously immortalized cell line derived from gastric MINEN called GNEN-1. Primary tumor consisted of components of high-grade neuroendocrine carcinoma and adenocarcinoma. The GNEN-1 cell line was initiated from metastatic tumor cells of peritoneal fluid and expresses a purely neuroendocrine phenotype. The GNEN-1 cell line grows as monolayers and has retained the neuroendocrine phenotype with positivity for chromogranin A in immunohistochemistry. Electron microscopy showed cytoplasmic dense core granules and axon hillocks. The karyotype revealed alterations typical of both adenocarcinoma and neuroendocrine carcinoma such as trisomy 7 and 8. GNEN-1 cells were also positive for stanniocalcin-1, a marker of poor prognosis in gastric carcinomas. Expression of several markers related to neuroendocrine tumors was found. There have been only a few studies on the pathogenesis of MINEN and management of the disease due to the rarity of this tumor type. Here we describe for the first time an immortalized cell line derived from mixed gastric NEN. The GNEN-1 line offers a tool for future research on gastric NEN.