Pervasive transcription is widespread in eukaryotes, generating large families of non-coding RNAs. Such pervasive transcription is a key player in the regulatory pathways controlling chromatin state and gene expression. Here, we describe long non-coding RNAs generated from the ribosomal RNA gene promoter called UPStream-initiating transcripts (UPS). In yeast, rDNA genes are organized in tandem repeats in at least two different chromatin states, either transcribed and largely depleted of nucleosomes (open) or assembled in regular arrays of nucleosomes (closed). The production of UPS transcripts by RNA Polymerase II from endogenous rDNA genes was initially documented in mutants defective for rRNA production by RNA polymerase I. We show here that UPS are produced in wild-type cells from closed rDNA genes but are hidden within the enormous production of rRNA. UPS levels are increased when rDNA chromatin states are modified at high temperatures or entering/leaving quiescence. We discuss their role in the regulation of rDNA chromatin states and rRNA production.
Abstract Ribosome biogenesis is a complex and energy-demanding process requiring tight coordination of ribosomal RNA (rRNA) and ribosomal protein (RP) production. Alteration of any step in this process may impact growth by leading to proteotoxic stress. Although the transcription factor Hsf1 has emerged as a central regulator of proteostasis, how its activity is coordinated with ribosome biogenesis is unknown. Here we show that arrest of ribosome biogenesis in the budding yeast S. cerevisiae triggers rapid activation of a highly specific stress pathway that coordinately up-regulates Hsf1 target genes and down-regulates RP genes. Activation of Hsf1 target genes requires neo-synthesis of RPs, which accumulate in an insoluble fraction, leading to sequestration of the RP transcriptional activator Ifh1. Our data suggest that levels of newly-synthetized RPs, imported into the nucleus but not yet assembled into ribosomes, work to continuously balance Hsf1 and Ifh1 activity, thus guarding against proteotoxic stress during ribosome assembly.
In eukaryotes, ribosome biogenesis is a process of major interest that requires more than 200 factors acting coordinately in time and space. Using genetic and proteomic studies, most of the components have now been identified. Based on its nucleolar localization, we characterized the protein encoded by the open reading frame YGR251W, we renamed Nop19p as playing an essential role in ribosome biogenesis. Depletion of the Nop19p in yeast impairs pre-rRNA processing at sites A₀, A₁ and A₂, leading to a strong decrease in 18S rRNA and 40S subunit levels. Nop19p is a component of 90S preribosomes which assembly is believed to result from stepwise incorporation of UTP modules. We show that Nop19p depletion does not impair the incorporation of UTP subcomplexes on preribosomes and conversely that depletion of UTP subcomplexes does not affect Nop19p recruitment on 90S preribosomes. TAP experiments under stringent conditions revealed that Nop19p interacts preferentially with the DEAH-box RNA helicase Dhr2p and Utp25p, both required for A 0, A 1 and A 2 cleavages. Nop19p appeared essential for the incorporation of Utp25p in preribosomes. In addition, our results suggest that in absence of Nop19p, Dhr2p remains trapped within aberrant preribosomes.
The Ntr1 and Ntr2 proteins of Saccharomyces cerevisiae have been reported to interact with proteins involved in pre-mRNA splicing, but their roles in the splicing process are unknown. We show here that they associate with a postsplicing complex containing the excised intron and the spliceosomal U2, U5, and U6 snRNAs, supporting a link with a late stage in the pre-mRNA splicing process. Extract from cells that had been metabolically depleted of Ntr1 has low splicing activity and accumulates the excised intron. Also, the level of U4/U6 di-snRNP is increased but those of the free U5 and U6 snRNPs are decreased in Ntr1-depleted extract, and increased levels of U2 and decreased levels of U4 are found associated with the U5 snRNP protein Prp8. These results suggest a requirement for Ntr1 for turnover of the excised intron complex and recycling of snRNPs. Ntr1 interacts directly or indirectly with the intron release factor Prp43 and is required for its association with the excised intron. We propose that Ntr1 promotes release of excised introns from splicing complexes by acting as a spliceosome receptor or RNA-targeting factor for Prp43, possibly assisted by the Ntr2 protein.
d’anticorps reconnaissant des motifs multiples ne manquent pas, il s’agissait jusqu’a maintenant d’une reconnaissance croisee entre des molecules qui etaient apparentees d’un point de vue structural. Ce que nous demontrent de maniere inattendue D.S. Tawfik et al. c’est la capacite d’une molecule unique d’anticorps a interagir avec des antigenes totalement differents via des sites distincts. Une telle demonstration pose la question de l’avantage d’un tel potentiel, et de sa signification biologique ! Les deux sites de liaison aux antigenes que presente une molecule d’immunoglobuline sont-ils equivalents? Peuventils reconnaitre des antigenes differents et/ou deux epitopes distincts proches dans l’espace a la surface d’une molecule antigenique ? Fonctionnent-ils de maniere cooperative ? S’agit-il la d’un moyen pour le systeme immunitaire d’assurer plus efficacement la neutralisation et l’elimination des molecules reconnues ? Comme bien souvent, ces resultats experimentaux posent plus de questions qu’ils n’apportent de reponses. Mais ce qui est certain, c’est que nous sommes en face d’une decouverte importante, dont nous ne faisons que commencer a entrevoir les consequences ! ◊ Antibody diversity is endless!
ABSTRACT The RNA polymerase I (Pol I) enzyme that synthesizes large rRNA precursors, exhibits high rate of pauses during elongation, indicative of a discontinuous process. We show here that Premature Termination of Transcription (PTT) by Pol I is a critical regulatory step limiting rRNA production in vivo . The Pol I mutant, SuperPol (RPA135-F301S), produces 1.5-fold more rRNA than the wild type (WT). Combined CRAC and rRNA analysis link increased rRNA production in SuperPol to reduced PTT, resulting in shifting polymerase distribution toward the 3’ end of rDNA genes. In vitro , SuperPol shows reduced nascent transcript cleavage, associated with more efficient transcript elongation after pauses. Notably, SuperPol is resistant to BMH-21, a drug impairing Pol I elongation and inducing proteasome- mediated degradation of Pol I subunits. Compared to WT, SuperPol maintains subunit stability and sustains high transcription levels upon BMH-21 treatment. These comparative results show that PTT is alleviated in SuperPol while it is stimulated by BMH-21 in WT Pol I.
Abstract Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo , the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6 Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that wild-type RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro . We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. Author summary The nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro . We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.