The purpose of this position statement is to define the scope of nuclear medicine practice and the professional competencies required now and for the future. Medical practice will change dramatically over the coming decades in ways no one can predict. The methodologies, technology, and radiotracers
Circulating tumor cells (CTCs) and [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) are two new promising tools for therapeutic monitoring. In this study, we compared the prognostic value of CTC and FDG-PET/CT monitoring during systemic therapy for metastatic breast cancer (MBC).A retrospective analyses of 115 MBC patients who started a new line of therapy and who had CTC counts and FDG-PET/CT scans performed at baseline and at 9 to 12 weeks during therapy (midtherapy) was performed. Patients were categorized according to midtherapy CTC counts as favorable (ie, < five CTCs/7.5 mL blood) or unfavorable (> or = five CTCs/7.5 mL blood) outcomes. CTC counts and FDG-PET/CT response at midtherapy were compared, and univariate and multivariate analyses were performed to identify factors associated with survival.In 102 evaluable patients, the median overall survival time was 14 months (range, 1 to > 41 months). Midtherapy CTC levels correlated with FDG-PET/CT response in 68 (67%) of 102 evaluable patients. In univariate analysis, midtherapy CTC counts and FDG-PET/CT response predicted overall survival (P < .001 and P = .001, respectively). FDG-PET/CT predicted overall survival (P = .0086) in 31 (91%) of 34 discordant patients who had fewer than five CTCs at midtherapy. Only midtherapy CTC levels remained significant in a multivariate analysis (P = .004).Detection of five or more CTCs during therapeutic monitoring can accurately predict prognosis in MBC beyond metabolic response. FDG-PET/CT deserves a role in patients who have fewer than five CTCs at midtherapy. Prospective trials should evaluate the most sensitive and cost-effective modality for therapeutic monitoring in MBC.
Several investigators have shown that noise equivalent count rate (NECR) is linearly proportional to the square of image signal-to-noise ratio (SNR) when PET images are reconstructed using filtered back-projection. However, to our knowledge, none have shown a similar relationship in fully 3D ordered-subset expectation maximization (OSEM) reconstruction. This paper has two aims. The first is to investigate the NECR-SNR relationship for 3D-OSEM reconstruction using phantom studies while the second aim is to evaluate the NECR-SNR relationship using patient data.An anthropomorphic phantom was scanned on a GE Discovery-STE (DSTE) PET∕CT scanner in 3D mode with an initial activity concentration of 66.34 kBq∕cc. PET data were acquired over the lower chest∕upper abdomen region in dynamic mode. The experiment was repeated with the same activity concentration on a GE Discovery-RX (DRX) scanner. Care was taken to place the phantom at identical positions in both scanners. PET data were then reconstructed using 3D Reprojection (3D-RP) and 3D-OSEM with different reconstruction parameters and the NECR and SNR for each frame∕image were calculated. SNR(2) was then plotted versus the NECR for each scanner, reconstruction method and parameters. In addition, 40 clinical PET∕CT studies from the two scanners (20 patients∕scanner) were evaluated retrospectively. The patient studies from each scanner were further divided into two subgroups of body mass indices (BMI). Each PET study was acquired in 3D mode and reconstructed using both 3D-OSEM and 3D-RP. The NECR and SNR of the bed position covering the patient liver were calculated for each patient and averaged for each subgroup. Comparisons of the NECR and SNR between scanner types and BMIs were performed using a t-test and a p value less than 0.05 was considered significant.Phantom results showed that SNR(2) versus NECR was linear for 3D-RP reconstruction across all activity concentration on both scanners, as expected. However, when 3D-OSEM was used, this relationship was nonlinear at activity concentrations beyond the peak NECR on both scanners. On the other hand, the plot of SNR(2) versus trues count rate was linear for 3D-OSEM across all activity concentrations on both scanners independent of reconstruction parameters used. In addition, for activity concentrations <30kBq∕cc, phantom results showed a higher SNR (by 12 ± 10%; p < 0.05) and NECR for the DRX scanner compared to DSTE for 3D-RP reconstruction. However, for 3D-OSEM reconstruction, these two scanners had similar SNRs (different by 2% ± 9%; p > 0.05), despite having different NECRs. Patient studies showed a statistically significant difference in NECR as well as the SNR for 3D-RP reconstruction between the two scanners. However, no statistically significant difference was found for 3D-OSEM. A statistically significant difference in both NECR and SNR were found between the different BMI subgroups for both 3D-RP and 3D-OSEM reconstructions.For the scanners and reconstruction algorithm used in this study, our results suggest that the image SNR cannot be predicted by the NEC when using 3D-OSEM reconstruction particularly for those clinical applications requiring high activity concentration. Instead, our results suggest that image SNR varies with activity concentration and is dominated by the 3D-OSEM reconstruction algorithm and its associated parameters, while not being affected by the scanner type for the range of activity concentrations usually found in the clinic.
The purpose of this study was to systematically evaluate the diagnostic quality of (18)F-FDG PET images generated using MR attenuation correction (MRAC) compared with those images generated using CT attenuation correction (CTAC) in a pediatric population.Forty-two patients (mean age, 12.8 years; percentage who were male, 57%) who were referred for 62 indicated whole-body PET/CT studies were prospectively recruited to undergo PET/MRI examinations during the same clinic visit in which PET/CT was performed. MRAC was performed using an automatic three-segment model. Three nuclear radiologists scored the diagnostic quality of the PET images generated by MRAC and CTAC using a Likert scale (range of scores, 1-5). Images graded with a score of 1-3 were considered clinically unacceptable, whereas images with a score of 4-5 were considered clinically acceptable. A Wilcoxon signed-rank test was used to compare differences in the grading of PET/MRI and PET/CT images. The Fisher exact test was used to evaluate potential differences in clinically acceptable image quality and the presence of artifact. Fleiss kappa statistics were used to examine interobserver agreement.There was no statistically significant difference in the proportion of PET images generated with MRAC and CTAC for which image quality was considered clinically acceptable. A total of 3.9% of PET assessments generated with MRAC were of unacceptable image quality, compared with 2.2% of PET images generated with CTAC. Two of the three radiologists who reviewed the PET images reported the presence of artifacts more often on MRAC-derived images, and they graded the mean quality of these images 0.48 and 0.29 points lower on the 5-point Likert scale than they graded the mean quality of CTAC-derived images (p < 0.0001). Interobserver agreement was fair (κ = 0.39).The diagnostic quality of PET images obtained from a pediatric population with the use of an automatic three-segmentation MRAC method was comparable to that of PET images obtained with the use of CTAC.
Functional imaging using positron emission tomography (PET) plays an important role in the diagnosis, staging, image-guided treatment planning and monitoring of malignant diseases. PET imaging complements conventional anatomical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI). The strength of CT scanning lies in its high spatial resolution, allowing for anatomical characterization of disease. PET imaging, however, moves beyond anatomy and characterizes tissue based on functions such as metabolic rate. Combined PET/CT scanners were introduced commercially in 2001 and a number of technological advancements have since occurred. Radiolabelled tracers such as 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) allow visualization of various metabolic processes within cancer cells. Many studies in human oncology evaluating the utility of PET/CT have demonstrated clinical benefits. Few veterinary studies have been performed, but initial studies show promise for improved detection of malignancy, more thorough staging of canine cancer and determination of early response and disease recrudescence.
Average CT (ACT) and PET have a similar temporal resolution and it has been shown to improve registration of the CT and PET data for PET/CT imaging of the thorax. The purpose of this study was to quantify the effect of ACT attenuation correction on PET for gross tumor volume (GTV) delineation with standardized uptake value (SUV) for liver and esophageal lesions. Our study included 48 colorectal cancer patients with metastasis in the liver and 52 esophageal cancer patients. These patients underwent a routine PET/CT scan followed by a cine CT scan of the thoracic region for ACT. Differences between the two PET data sets (PET HCT and PET ACT ) corrected with the helical CT (HCT) and ACT were quantified by analyzing image alignment, maximum SUV (SUV max ), and GTV. The 67% of the colorectal and 73% of the esophageal studies demonstrated misregistration between the PET HCT and HCT data. ACT was effective in removing misregistration artifacts in 65% of the misregisted colorectal and in 76% of the misregisted esophageal cancer patients. Misregistration between the CT and PET data affected GTVs due to the change in SUV max with ACT. A change of SUV max greater than 20% between PET HCT and PET ACT was found in 15% of the colorectal and 17% of the esophageal cases. Our results demonstrated a more pronounced effect of misregistration for the smaller lesions (< 5 cm 3 ) near the diaphragm (< 5 cm). ACT was effective in improving registration between the CT and PET data in PET/CT for the colorectal and esophageal cancer patients.