The development of methods to synthesize and physically manipulate extremely thin, single-crystalline inorganic semiconductor materials, so-called nanomembranes, has led to an almost explosive growth of research worldwide into uniquely enabled opportunities for their use in new "soft" and other unconventional form factors for high-performance electronics. The unique properties that nanomembranes afford, such as their flexibility and lightweight characteristics, allow them to be integrated into electronic and optoelectronic devices that, in turn, adopt these unique attributes. For example, nanomembrane devices are able to make conformal contact to curvilinear surfaces and manipulate strain to induce the self-assembly of various 3D nano/micro device architectures. Further, thin semiconductor materials (e.g., Si-nanomembranes, transition metal dichalcogenides, and phosphorene) are subject to the impacts of quantum and other size-dependent effects that in turn enable the manipulation of their bandgaps and the properties of electronic and optoelectronic devices fabricated from them. In this Perspective, nanomembrane synthesis techniques and exemplary applications of their use are examined. We specifically describe nanomembrane chemistry exploiting high-performance materials, along with precise/high-throughput techniques for their manipulation that exemplify their growing capacities to shape outcomes in technology. Prominent challenges in the chemistry of these materials are presented along with future directions that might guide the development of next generation nanomembrane-based devices.
As a two-dimensional (2D) sp2-bonded carbon allotrope, graphene has attracted enormous interest over the past decade due to its unique properties, such as ultrahigh electron mobility, uniform broadband optical absorption and high tensile strength. In the initial research, graphene was isolated from natural graphite, and limited to small sizes and low yields. Recently developed chemical vapor deposition (CVD) techniques have emerged as an important method for the scalable production of large-size and high-quality graphene for various applications. However, CVD-derived graphene is polycrystalline and demonstrates degraded properties induced by grain boundaries. Thus, the next critical step of graphene growth relies on the synthesis of large graphene single crystals.In this Account, we first discuss graphene grain boundaries and their influence on graphene's properties. Mechanical and electrical behaviors of CVD-derived polycrystalline graphene are greatly reduced when compared to that of exfoliated graphene. We then review four representative pathways of pretreating Cu substrates to make millimeter-sized monolayer graphene grains: electrochemical polishing and high-pressure annealing of Cu substrate, adding of additional Cu enclosures, melting and resolidfying Cu substrates, and oxygen-rich Cu substrates. Due to these pretreatments, the nucleation site density on Cu substrates is greatly reduced, resulting in hexagonal-shaped graphene grains that show increased grain domain size and comparable electrical properties as to exfoliated graphene. Also, the properties of graphene can be engineered by its shape, thickness and spatial structure. Thus, we further discuss recently developed methods of making graphene grains with special spatial structures, including snowflakes, six-lobed flowers, pyramids and hexagonal graphene onion rings. The fundamental growth mechanism and practical applications of these well-shaped graphene structures should be interesting topics and deserves more attention in the near future. Following that, recent efforts in fabricating large single-crystal monolayer graphene on other metal substrates, including Ni, Pt, and Ru, are also described. The differences in growth conditions reveal different growth mechanisms on these metals. Another key challenge for graphene growth is to make graphene single crystals on insulating substrates, such as h-BN, SiO2, and ceramic. The recently developed plasma-enhanced CVD method can be used to directly synthesize graphene single crystals on h-BN substrates and is described in this Account as well.To summarize, recent research in synthesizing millimeter-sized monolayer graphene grains with different pretreatments, graphene grain shapes, metal catalysts, and substrates is reviewed. Although great advancements have been achieved in CVD synthesis of graphene single crystals, potential challenges still exist, such as the growth of wafer-sized graphene single crystals to further facilitate the fabrication of graphene-based devices, as well as a deeper understanding of graphene growth mechanisms and growth dynamics in order to make graphene grains with precisely controlled thicknesses and spatial structures.
Ultrasound focusing plays an important role in biomedical therapy and diagnosis. Acoustic metalens has showcased remarkable focusing performance but yet to be implemented to the practical ultrasound therapeutic applications. We design a planar metalens operating at megahertz and experimentally demonstrate the distinct thermal effect on biological tissues induced by the high-resolution focusing. A prominent temperature rise of 50°C is experimentally observed in the biological phantom, with a much lower input ultrasound power of 4 W compared with the traditional methods. We further study the thermal effect on fresh porcine liver and investigate the morphological changes under different physical parameters. Visible lesions are observed in in vitro tissues at the lowest input ultrasound power of 2.6 W within 10 s. This study facilitates the practical biomedical application of acoustic metalens, providing a feasible approach for the precise, safe, and reliable therapeutic ultrasound with the simple and compact metalens.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
In this research, 3-dimensional (3D) graphene/carbon nanotube carpets (G/CNTCs)-based microsupercapacitors (G/CNTCs-MCs) were fabricated in situ on nickel electrodes. The G/CNTCs-MCs show impedance phase angle of -81.5° at a frequency of 120 Hz, comparable to commercial aluminum electrolytic capacitors (AECs) for alternating current (ac) line filtering applications. In addition, G/CNTCs-MCs deliver a high volumetric energy density of 2.42 mWh/cm(3) in the ionic liquid, more than 2 orders of magnitude higher than that of AECs. The ultrahigh rate capability of 400 V/s enables the microdevices to demonstrate a maximum power density of 115 W/cm(3) in aqueous electrolyte. The high-performance electrochemical properties of G/CNTCs-MCs can provide more compact ac filtering units and discrete power sources in future electronic devices. These elevated electrical features are likely enabled by the seamless nanotube/graphene junctions at the interface of the differing carbon allotropic forms.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Precise spatial control of materials is the key capability of engineering their optical, electronic, and mechanical properties. However, growth of graphene on Cu was revealed to be seed-induced two-dimensional (2D) growth, limiting the synthesis of complex graphene spatial structures. In this research, we report the growth of onion ring like three-dimensional (3D) graphene structures, which are comprised of concentric one-dimensional hexagonal graphene ribbon rings grown under 2D single-crystal monolayer graphene domains. The ring formation arises from the hydrogenation-induced edge nucleation and 3D growth of a new graphene layer on the edge and under the previous one, as supported by first principles calculations. This work reveals a new graphene-nucleation mechanism and could also offer impetus for the design of new 3D spatial structures of graphene or other 2D layered materials. Additionally, in this research, two special features of this new 3D graphene structure were demonstrated, including nanoribbon fabrication and potential use in lithium storage upon scaling.