The recent action of positive selection is expected to influence patterns of intraspecific DNA sequence variation in chromosomal regions linked to the selected locus. These effects include decreased polymorphism, increased linkage disequilibrium, and an increased frequency of derived variants. These effects are all expected to dissipate with distance from the selected locus due to recombination. Therefore, in regions of high recombination, it should be possible to localize a target of selection to a relatively small interval. Previously described patterns of intraspecific variation in three tandemly arranged, testes-expressed genes (janusA, janusB, and ocnus) in Drosophila simulans included all three of these features. Here we expand the original sample and also survey nucleotide polymorphism at three neighboring loci. On the basis of recombination events between derived and ancestral alleles, we localize the target of selection to a 1.5-kb region surrounding janusB. A composite-likelihood-ratio test based on the spatial distribution and frequency of derived polymorphic variants corroborates this result and provides an estimate of the strength of selection. However, the data are difficult to reconcile with the simplest model of positive selection, whereas a new composite-likelihood method suggests that the data are better described by a model in which the selected allele has not yet gone to fixation.
During in vitro fertilisation (IVF), pharmacological activation of the murine X chromosome–encoded receptor proteins Toll-like receptor (TLR) 7 and TLR8 reportedly results in male-biased litters by selectively disrupting the motility of X-bearing sperm cells. Thus—in the context of agonist treatment during IVF—these receptors act as 'suicidal' segregation distorters that impair their own transmission to the next generation. Such behaviour would, from an evolutionary perspective, be strongly selected against if present during natural fertilisation. Consequently, TLR7/8 biology in vivo must differ significantly from this in vitro situation to allow these genes to persist in the genome. Here, we use our current understanding of male germ cell biology and TLR function as a starting point to explore the mechanistic and evolutionary aspects of this apparent paradox.
Meiosis is a dangerous business. The two alleles in diploid organisms share an evolutionary interest in the survival and reproduction of their host individual; however, as soon as they segregate into haploid gametes, these alleles find themselves competing for transmission to the next generation (1). In males, the development of all four meiotic products into functional gametes fosters the evolution of alleles that disrupt the development or viability of gametes carrying the alternate allele. Systems that distort Mendelian segregation (hence, segregation distorters) typically comprise at least two loci: a trans-acting drive locus (such as a gene that encodes a poison) that targets alleles that are sensitive to the poison at a second, linked locus (2). A major impediment to the evolution of segregation distorters is the requirement that the poisonous allele be tightly linked to resistant alleles at the target locus; otherwise, distorters will commit suicide when paired with a sensitive allele (3). As a result, segregation distorters on autosomes are invariably associated with inversions that suppress recombination between the distorter and target loci. In contrast, heteromorphic sex chromosomes, where the Y chromosome is highly degenerated, can facilitate the evolution of segregation distorters because the X and Y frequently share little homologous sequence and do not recombine along most or all of their length. Thus, sex-chromosome segregation distorters that distort the sex ratio of the progeny of males that carry them (hence, sex-ratio distorters) are predicted to evolve frequently (4). The presence of sex-ratio distorters in populations selects for resistant Y chromosomes and autosomal suppressors that restore male fertility and a balanced sex ratio, and may lead to either balanced polymorphisms or open-ended arms races between loci that function in the male germ line (5). A recent study in PNAS has identified a gene required for sex-ratio distortion in Drosophila simulans (6), providing novel insight into the genetic and molecular mechanisms used by these selfish elements and their effects on genome evolution and species formation.
Comparison of the gene-expression profiles between adults of Drosophila melanogaster and Drosophila simulans has uncovered the evolution of genes that exhibit sex-dependent regulation. Approximately half the genes showed differences in expression between the species, and among these, ∼83% involved a gain, loss, increase, decrease, or reversal of sex-biased expression. Most of the interspecific differences in messenger RNA abundance affect male-biased genes. Genes that differ in expression between the species showed functional clustering only if they were sex-biased. Our results suggest that sex-dependent selection may drive changes in expression of many of the most rapidly evolving genes in the Drosophila transcriptome.
Evolutionary changes in gene expression underlie many aspects of phenotypic diversity within and among species. Understanding the genetic basis for evolved changes in gene expression is therefore an important component of a comprehensive understanding of the genetic basis of phenotypic evolution. Using interspecific introgression hybrids, we examined the genetic basis for divergence in genome-wide patterns of gene expression between Drosophila simulans and Drosophila mauritiana. We find that cis-regulatory and trans-regulatory divergences differ significantly in patterns of genetic architecture and evolution. The effects of cis-regulatory divergence are approximately additive in heterozygotes, quantitatively different between males and females, and well predicted by expression differences between the two parental species. In contrast, the effects of trans-regulatory divergence are associated with largely dominant introgressed alleles, have similar effects in the two sexes, and generate expression levels in hybrids outside the range of expression in both parental species. Although the effects of introgressed trans-regulatory alleles are similar in males and females, expression levels of the genes they regulate are sexually dimorphic between the parental D. simulans and D. mauritiana strains, suggesting that pure-species genotypes carry unlinked modifier alleles that increase sexual dimorphism in expression. Our results suggest that independent effects of cis-regulatory substitutions in males and females may favor their role in the evolution of sexually dimorphic phenotypes, and that trans-regulatory divergence is an important source of regulatory incompatibilities.
Male-biased genes—those expressed at higher levels in males than in females—are underrepresented on the X chromosome of Drosophila melanogaster. Several evolutionary models have been posited to explain this so-called demasculinization of the X. Here, we show that the apparent paucity of male-biased genes on the X chromosome is attributable to global X-autosome differences in expression in Drosophila testes, owing to a lack of sex chromosome dosage compensation in the male germline, but not to any difference in the density of testis-specific or testis-biased genes on the X chromosome. First, using genome-wide gene expression data from 20 tissues, we find no evidence that genes with testis-specific expression are underrepresented on the X chromosome. Second, using contrasts in gene expression profiles among pairs of tissues, we recover a statistical underrepresentation of testis-biased genes on the X but find that the pattern largely disappears once we account for the lack of dosage compensation in the Drosophila male germline. Third, we find that computationally "demasculinizing" the autosomes is not sufficient to produce an expression profile similar to that of the X chromosome in the testes. Our findings thus show that the lack of sex chromosome dosage compensation in Drosophila testes can explain the apparent signal of demasculinization on the X, whereas evolutionary demasculinization of the X cannot explain its overall reduced expression in the testes.