Organic and inorganic nanoparticles (NPs) are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. These applications require knowledge of the chemical nature, total number of surface groups, and the number of groups accessible for subsequent coupling of e.g., antifouling ligands, targeting bioligands, or sensor molecules. To establish the concept of catch-and-release assays, cleavable probes were rationally designed from a quantitatively cleavable disulfide moiety and the optically detectable reporter 2-thiopyridone (2-TP). For quantifying surface groups on nanomaterials, first, a set of monodisperse carboxy-and amino-functionalized, 100 nm-sized polymer and silica NPs with different surface group densities was synthesized. Subsequently, the accessible functional groups (FGs) were quantified via optical spectroscopy of the cleaved off reporter after its release in solution. Method validation was done with inductively coupled plasma optical emission spectroscopy (ICP-OES) utilizing the sulfur atom of the cleavable probe. This comparison underlined the reliability and versatility of our probes, which can be used for surface group quantification on all types of transparent, scattering, absorbing and/or fluorescent particles. The correlation between the total and accessible number of FGs quantified by conductometric titration, qNMR, and with our cleavable probes, together with the comparison to results of conjugation studies with differently sized biomolecules reveal the potential of catch-and-release reporters for surface analysis. Our findings also underline the importance of quantifying particularly the accessible amount of FGs for many applications of NPs in the life sciences.
Risk assessment of nanomaterials requires not only standardized toxicity studies but also validated methods for nanomaterial surface characterization with known uncertainties. In this context, a first bilateral interlaboratory comparison on surface group quantification of nanomaterials is presented that assesses different reporter-free and labeling methods for the quantification of the total and accessible number of amine functionalities on commercially available silica nanoparticles that are widely used in the life sciences. The overall goal of this comparison is the identification of optimum methods as well as achievable measurement uncertainties and the comparability of the results across laboratories. We also examined the robustness and ease of implementation of the applied analytical methods and discussed method-inherent limitations. In summary, this comparison presents a first step toward the eventually required standardization of methods for surface group quantification.
Abstract Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5-9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37°C and 4°C. This revealed a temperature-dependent decrease in pH over a 4-hour period caused by the acidifying glucose metabolism of E. coli . These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods.
We present a comparative study of the spectroscopic properties of the donor–acceptor–donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitrile-triphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state.
Differently sized organic and inorganic particles are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications.1 Particle performance in such applications depends mainly on the sum of their intrinsic physicochemical properties. Here, the surface chemistry, i.e., the total number of surface functional groups (FG) and the number of FG accessible for subsequent modification with ligands and/or biomolecules, is one of the key parameters. Moreover, the surface chemistry of these materials controls the behavior and fate of the particles when released to the environment or taken up by cells. Nevertheless, it is still relatively rare that FG are quantified in particle safety studies. Methods for FG quantification should be simple, robust, reliable, fast, and inexpensive, and allow for the characterization of a broad variety of materials differing in size, chemical composition, and optical properties.
Aiming at the development of simple, versatile, and multimodal tools for the quantification of bioanalytically relevant FG such as amine2,3, carboxy2,3, thiol, and aldehyde4 functionalities, we designed a catch-and-release assay utilizing cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation, and thus, circumvent interferences resulting from particle light scattering and sample-inherent absorption or emission.2 The potential of our cleavable probes for the quantification of carboxy and amino groups was demonstrated for commercial and custom-made polymer and silica particles of varying FG densities, underlining the benefit of the catch-and-release assays as a versatile method for the FG quantification on all types of transparent, scattering, absorbing and/or fluorescent particles.2,3 In the future, our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by pH, utilizing well-established chemistry, e.g. from drug delivery systems. It can contribute to establish multi-method characterization strategies for particles to provide a more detailed picture of the structure-properties relationship and thus can support the design of sustainable and safe(r) materials.
Fluorescence lifetime measurements reveal two emissive species in the solid-state structure of high-dipole chromophores unravelled by high-level quantum-chemical approaches to originate from both monomers and H-type dimers.
Carboxy, amino, and thiol groups play a critical role in a variety of physiological and biological processes and are frequently used for bioconjugation reactions. Moreover, they enable size control and tuning of the surface during the synthesis of particle systems. Especially, thiols have a high binding affinity to noble metals and semiconductors (SC). Thus, simple, inexpensive, robust, and fast methods for the quantification of surface groups and the monitoring of reactions involving ligands are of considerable importance for the characterization of modified or stabilized nanomaterials including polymers.
We studied the potential of the Ellman’s assay, recently used for the quantification of thiol ligands on SC nanocrystals by us1 and the 4-aldrithiol assay for the determination of thiol groups in molecular systems and on polymeric, noble and SC nanomaterials. The results were validated with ICP-OES and reaction mechanisms of both methods were studied photometrically and with ESI-TOF-MS.
The investigation of the reaction mechanisms of both methods revealed the influence of different thiols on the stoichiometry of the reactions2, yielding different mixed disulfides and the thiol-specific products spectroscopically detected. The used methods can quantify freely accessible surface groups on nanoparticles, e.g., modified polystyrene nanoparticles. For thiol ligands coordinatively bound to surface atoms of, e.g., noble or SC nanomaterials, depending on the strength of the thiol-surface bonds, particle dissolution prior to assay performance can be necessary.
We could demonstrate the reliability of the Ellman’s and aldrithiol assay for the quantification of surface groups on nanomaterials by ICP-OES and derived assay-specific requirements and limitations. Generally, it is strongly recommended to carefully control assay performance for new samples, components, and sample ingredients to timely identify possible interferences distorting quantification.
Abstract N ‐Benzyl‐aroyl‐ S , N ‐ketenacetale können durch die Kondensation von Aroylchloriden und N ‐Benzyl‐2‐methylbenzothiazolium‐Salzen in guten bis ausgezeichneten Ausbeuten dargestellt werden, wodurch eine Substanzbibliothek bestehend aus 35 Chromophoren mit intensiver Festkörperemissions‐ und aggregationsinduzierten Emissions‐Eigenschaften aufgebaut werden konnte. Mittels Variation des Substituenten von elektronenschiebend bis elektronenziehend kann die Emissionsfarbe der Festkörperfluoreszenz gezielt von blau bis rot eingestellt werden.