Trabajo presentado en la 34 Reunion del Grupo de Trabajo de Experimentacion en Viticultura y Enologia, celebrada en Zaragoza (Espana), los dias 10 y 11 de abril de 2019
In May 2008, symptoms of black foot disease were observed on 8-year-old grapevines (Vitis vinifera L.) cv. Garnacha in Albuñol (Granada Province, southern Spain). Affected plants showed delayed budding with low vigor. Roots showed black discoloration and necrosis of wood tissues. Root fragments were cut, washed under running tap water, surface sterilized for 1 min in a 1.5% sodium hypochlorite solution, and washed twice with sterile distilled water. Small pieces of discolored or necrotic tissues were plated onto potato dextrose agar (PDA) supplemented with 0.5 g liter-1 of streptomycin sulfate. Plates were incubated at 25°C in the dark for 10 days and all colonies were transferred to PDA. A Cylindrocarpon-like fungus was consistently isolated from necrotic root tissues. Single conidial isolates were obtained and grown on PDA and Spezieller Nährstoffarmer Agar (SNA) and incubated at 25°C for 10 days in darkness. On PDA, the isolates developed white, thick, and cottony to felty abundant mycelium. On SNA, all isolates produced slightly to moderately curved one-septate (22.5-) 25.6 (-27.5) × (5-) 5.63 (-6.25) μm, two-septate (30-) 36.1 (-45) × (6.25-) 7.08 (-7.5) μm, three-septate (37.5-) 47.9 (-52.5) × (6.25-) 7.5 (-8.75) μm, four-septate (47.5-) 53.3 (-62.5) × (7.5-) 7.89 (-8.75) μm, and five-septate (52.5-) 61.8 (-67.5) × (7.5-) 8 (-8.75) μm macroconidia. Microconidia were not observed. DNA sequence of the rDNA internal transcribed spacer region (ITS) was obtained for isolate Cf-270 and deposited in GenBank (Accession No. HQ441249). This sequence showed high similarity (99%) to the sequence of Campylocarpon fasciculare Schroers, Halleen & Crous (GenBank Accession No. AY677303), in agreement with morphological features (1). Pathogenicity tests were conducted with inoculum produced on wheat (Triticum aestivum L.) seeds that were soaked for 12 h in flasks filled with distilled water. Each flask contained 300 ml of seeds that were subsequently autoclaved three times after excess water was drained. Two fungal disks of a 2-week-old culture of C. fasciculare (isolate Cf-270) grown on PDA were placed aseptically in each flask. The flasks were incubated at 25°C for 4 weeks and shaken once a week to avoid clustering of inoculum. Plastic pots (220 cm3) were filled with a mixture of sterilized peat moss and 10 g of inoculum per pot. One-month-old grapevine seedlings were planted individually in each pot and placed in a greenhouse at 25 to 30°C in a completely randomized design. Control plants were inoculated with sterile uninoculated seeds. Six replicates (each one in individual pots) were used, with an equal number of control plants. The experiment was repeated. Symptoms developed on all plants 20 days after inoculation and consisted in reduced vigor, interveinal chlorosis and necrosis of the leaves, necrotic root lesions with a reduction in root biomass, and plant death. The fungus was reisolated from the roots of affected seedlings and identified as C. fasciculare, completing Koch's postulates. No symptoms were observed on the control plants. Black foot disease of grapevines can be caused by different species of Cylindrocarpon and Campylocarpon. C. fasciculare was first reported in South Africa in 2004 (1). To our knowledge, this is the first report of C. fasciculare causing black foot disease of grapevine in Spain as well as other countries in Europe. Reference: (1) F. Halleen et al. Stud. Mycol. 50:431, 2004.
The microbiota colonizing the rhizosphere and the endorhizosphere contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Several studies suggested that different plants types and even genotypes of the same plant species harbor partially different microbiomes. Here, we characterize the rhizosphere bacterial and fungal microbiota across five grapevine rootstock genotypes cultivated in the same soil at two vineyards and sampling dates over 2 years by 16S rRNA gene and ITS high-throughput amplicon sequencing. In addition, we use quantitative PCR (qPCR) approach to measure the relative abundance and dynamic changes of fungal pathogens associated with black-foot disease. The objectives were to (1) unravel the effects of rootstock genotype on microbial communities in the rhizosphere of grapevine and (2) to compare the relative abundances of sequence reads and DNA amount of black-foot disease pathogens. Host genetic control of the microbiome was evident in the rhizosphere of the mature vineyard. Microbiome composition also shifted as year of sampling, and fungal diversity varied with sampling moments. Linear discriminant analysis identified specific bacterial (i.e., Bacillus) and fungal (i.e., Glomus) taxa associated with grapevine rootstocks. Host genotype did not predict any summary metrics of rhizosphere α- and β-diversity in the young vineyard. Regarding black-foot associated pathogens, a significant correlation between sequencing reads and qPCR was observed. In conclusion, grapevine rootstock genotypes in the mature vineyard were associated with different rhizosphere microbiomes. The latter could also have been affected by age of the vineyard, soil properties or field management practices. A more comprehensive study is needed to decipher the cause of the rootstock microbiome selection and the mechanisms by which grapevines are able to shape their associated microbial community. Understanding the vast diversity of bacteria and fungi in the rhizosphere and the interactions between microbiota and grapevine will facilitate the development of future strategies for grapevine protection.
The susceptibility of the grapevine rootstocks most commonly used in Spain to black-foot (Ilyonectria liriodendri and Dactylonectria macrodidyma-complex) and petri disease (Cadophora luteo-olivacea, Phaeomoniella chlamydospora and five species of Phaeoacremonium) pathogens was evaluated. Rooted cuttings of rootstocks 110R, 1103P, 140Ru, 161-49C, 196-17C, Fercal and SO4 were inoculated with black-foot pathogens by dipping their roots in conidial suspensions (5×105 conidia mL-1), planted in pots containing sterilized peat moss and placed in a greenhouse. After four months of incubation, root disease severity index and dry weights of shoots and roots were recorded for each plant. Regarding petri disease pathogens, one-year-old grapevine cuttings of five rootstocks (41B, 140Ru, 161-49C, 1103P and 110R) were vacuum-inoculated with spore suspensions (106 conidia mL-1) of the fungal species and planted in two fields. After four months, the proportion of vines that sprouted in spring was visually determined. At the end of the growing season, dormant plants were uprooted, washed, and assessed for undried shoot weight. Then, the stem of each grapevine cutting was transversally split at 10 cm from the base of the plant to estimate the percentage of vascular tissue discoloured on a scale of 0 to 4. All rootstocks inoculated with Ilyonectria and Dactylonectria species were affected by the disease in some degree, the rootstock 110R being the most susceptible to black-foot. Petri disease pathogens caused a significant reduction of sprouting and shoot weight, as well as a significant increase of disease severity percentage in all grapevine rootstocks with the exception of 161-49C. Both 110R and 140Ru were the most susceptible. Grapevine rootstocks showed different levels of disease resistance, being the rootstock 110R the most susceptible to both diseases and the 161-49C rootstock the most tolerant to petri disease infection.
Among the agricultural practices promoted by the Common Agricultural Policy to increase soil functions, the use of cover crops is a recommended tool to improve the sustainability of Mediterranean woody crops such as olive orchards. However, there is a broad range of cover crop typologies in relation to its implementation, control and species composition. In that sense, the influence of different plant species on soil quality indicators in olive orchards remains unknown yet. This study describes the effects of four treatments based on the implementation of different ground covers (CC-GRA: sown cover crop with gramineous, CC-MIX: sown cover crop with a mixture of species and CC-NAT: cover crop with spontaneous vegetation) and conventional tillage (TILL) on soil erosion, soil physicochemical and biological properties after 8 years of cover crop establishment. Our results demonstrated that the presence of a temporary cover crop (CC), compared to a soil under tillage (TILL), can reduce soil losses and maintain good soil physicochemical properties and modify greatly the structure and diversity of soil bacterial communities and its functioning. The presence of a homogeneous CC of gramineous (Lolium rigidum or Lolilum multiflorum) (CC-GR) for 8 years increased the functional properties of the soil as compared to TILL; although the most relevant change was a modification on the bacterial community composition that was clearly different from the rest of treatments. On the other hand, the use of a mixture of plant species (CC-MIX) as a CC for only two years although did not modify greatly the structure and diversity of soil bacterial communities compared to the TILL soil, induced significant changes on the functional properties of the soil and reverted those properties to a level similar to that of an undisturbed soil that had maintained a natural cover of spontaneous vegetation for decades (CC-NAT).