The use of T-cell engagers (TCEs) to treat solid tumors is challenging, and several have been limited by narrow therapeutic windows due to substantial on-target, off-tumor toxicities due to the expression of low levels of target antigens on healthy tissues. Here, we describe TNB-928B, a fully human TCE that has a bivalent binding arm for folate receptor alpha (FRα) to selectively target FRα overexpressing tumor cells while avoiding the lysis of cells with low levels of FRα expression. The bivalent design of the FRα binding arm confers tumor selectivity due to low-affinity but high-avidity binding to high FRα antigen density cells. TNB-928B induces preferential effector T-cell activation, proliferation, and selective cytotoxic activity on high FRα expressing cells while sparing low FRα expressing cells. In addition, TNB-928B induces minimal cytokine release compared to a positive control TCE containing OKT3. Moreover, TNB-928B exhibits substantial ex vivo tumor cell lysis using endogenous T-cells and robust tumor clearance in vivo, promoting T-cell infiltration and antitumor activity in mouse models of ovarian cancer. TNB-928B exhibits pharmacokinetics similar to conventional antibodies, which are projected to enable favorable administration in humans. TNB-928B is a novel TCE with enhanced safety and specificity for the treatment of ovarian cancer.
Abstract Aims Doxorubicin (DXR) is a chemotherapeutic agent that causes dose-dependent cardiotoxicity. Recently, it has been proposed that the NADase CD38 may play a role in doxorubicin-induced cardiotoxicity (DIC). CD38 is the main NAD+-catabolizing enzyme in mammalian tissues. Interestingly, in the heart, CD38 is mostly expressed as an ecto-enzyme that can be targeted by specific inhibitory antibodies. The goal of the present study is to characterize the role of CD38 ecto-enzymatic activity in cardiac metabolism and the development of DIC. Methods and results Using both a transgenic animal model and a non-cytotoxic enzymatic anti-CD38 antibody, we investigated the role of CD38 and its ecto-NADase activity in DIC in pre-clinical models. First, we observed that DIC was prevented in the CD38 catalytically inactive (CD38-CI) transgenic mice. Both left ventricular systolic function and exercise capacity were decreased in wild-type but not in CD38-CI mice treated with DXR. Second, blocking CD38-NADase activity with the specific antibody 68 (Ab68) likewise protected mice against DIC and decreased DXR-related mortality by 50%. A reduction of DXR-induced mitochondrial dysfunction, energy deficiency, and inflammation gene expression were identified as the main mechanisms mediating the protective effects. Conclusion NAD+-preserving strategies by inactivation of CD38 via a genetic or a pharmacological-based approach improve cardiac energetics and reduce cardiac inflammation and dysfunction otherwise seen in an acute DXR cardiotoxicity model.
Our previous study supports an additive effect of cocaine to human immunodeficiency virus infection in the development of pulmonary arteriopathy through enhancement of proliferation of pulmonary smooth muscle cells (SMCs), while also suggesting involvement of platelet-derived growth factor receptor (PDGFR) activation in the absence of further increase in PDGF-BB ligand. Redox-related signaling pathways have been shown to regulate tyrosine kinase receptors independent of ligand binding, so we hypothesized that simultaneous treatment of SMCs with transactivator of transcription (Tat) and cocaine may be able to indirectly activate PDGFR through modulation of reactive oxygen species (ROS) without the need for PDGF binding. We found that blocking the binding of ligand using suramin or monoclonal IMC-3G3 antibody significantly reduced ligand-induced autophosphorylation of Y1009 without affecting ligand-independent transphosphorylation of Y934 residue on PDGFRβ in human pulmonary arterial SMCs treated with both cocaine and Tat. Combined treatment of human pulmonary arterial SMCs with cocaine and Tat resulted in augmented production of superoxide radicals and hydrogen peroxide when compared with either treatment alone. Inhibition of this ROS generation prevented cocaine- and Tat-mediated Src activation and transphosphorylation of PDGFRβ at Y934 without any changes in phosphorylation of Y1009, in addition to attenuation of smooth muscle hyperplasia. Furthermore, pretreatment with an Src inhibitor, PP2, also suppressed cocaine- and Tat-mediated enhanced Y934 phosphorylation and smooth muscle proliferation. Finally, we report total abrogation of cocaine- and Tat-mediated synergistic increase in cell proliferation on inhibition of both ligand-dependent and ROS/Src-mediated ligand-independent phosphorylation of PDGFRβ.
Therapeutic options currently available for metastatic castration-resistant prostate cancer (mCRPC) do not extend median overall survival >6 months. Therefore, the development of novel and effective therapies for mCRPC represents an urgent medical need. T cell engagers (TCEs) have emerged as a promising approach for the treatment of mCRPC due to their targeted mechanism of action. However, challenges remain in the clinic due to the limited efficacy of TCEs observed thus far in solid tumors as well as the toxicities associated with cytokine release syndrome (CRS) due to the usage of high-affinity anti-CD3 moieties such as OKT3.
e17583 Background: Castration resistant prostate cancer (CRPC) is an incurable disease and represents a significant unmet need. Prostate specific membrane antigen (PSMA) is a protein highly expressed on the surface of prostate cancer cells; expression has been shown to increase with disease progression. Therapies targeting PSMA, such as anti-PSMA radioligand conjugates, have shown promise in clinical trials, validating this target for CRPC. T-cell recruiting bispecific antibodies (T-BsAbs) have demonstrated potent tumor killing activity against multiple tumor types, but immune-mediated toxicities have hampered T-cell redirecting therapies to date. Using Teneobio’s unique antibody discovery platform, we have developed a CD3xPSMA bispecific antibody (TNB-585) that retains the potent cytotoxicity of other T-BsAbs but with significantly reduced cytokine release. Methods: Antibodies targeting CD3 and PSMA were generated via immunization of our proprietary transgenic animals. Candidate antibodies were selected by repertoire deep sequencing of B-cells from draining lymph nodes, followed by high-throughput gene assembly and recombinant expression. Multiple bispecific antibodies targeting CD3 and PSMA were assembled and evaluated for their ability to selectively activate primary human T-cells and mediate killing of PSMA+ tumor cells in vitro, ex vivo, and in vivo. T-cell activation surface markers, cytokine production, and tumor cell cytotoxicity were measured. Results: In co-culture experiments, primary human T-cells were activated only in the presence of both the bispecifics and PSMA+ cells. These bispecifics mediated potent and selective cytotoxicity against PSMA-positive tumor cells, prostate tumor cell lines, or primary human prostate tumor cells isolated from patients. From among these we identified TNB-585, which showed attenuated binding to CD3. TNB-585 mediated comparable tumor cell cytotoxicity to CD3xPSMA T-BsAbs containing a high affinity anti-CD3 domain but with significantly reduced cytokine production. TNB-585 also showed tumor growth inhibition in xenograft models of prostate cancer in vivo. Conclusions: We have developed a novel CD3xPSMA T-BsAb that mediates T-cell killing of PSMA+ tumor cells with minimal production of cytokines. This molecule may improve safety, efficacy, and offer opportunities for combination therapy to treat CRPC. A Phase 1 clinical trial of this compound in CRPC is scheduled to begin in Q1 2021.
Technologies like AI ,machine learning, data science are becoming upgraded.The advancement in available, portable, low cost handheld devices like cell phones and availability of network connection has resulted within the user's mobility at an unprecedented level.We've studied different methodologies like Smart goal annotation, state phase annotation, collection process, agreement results also as annotation skills for achieving the health goals.The user has got to type their health regarding the query based on that assistant giving the acceptable answer.The facilities like report generation and scheduling assignment are provided.It'll increase the interaction between humans and machines with the assistance of different technologies, vast dialogue ,conversational knowledge based, public knowledge based.The system uses different algorithms for disease recognition, behavior abnormality detection, prediction etc. Experimental results show that: Compared with traditional methods,the proposed method is more accurate and faster and patients can get service anywhere and anytime.
The host immune response is critical for homeostasis; however, when chronic low level activation of the immune response with or without the driver continues, a cascade of events can trigger immunological dysfunction. Monocytes are key peripheral sensors of the immune response and their activation is instrumental in the development of cognitive impairment. Here, we show that monocytes activated by interferon alpha, lipopolysaccharide or a combination of both generate exosomes carrying significantly altered microRNA profiles compared to non-activated monocytes. These exosomes alone can activate human brain microvascular endothelial cells to stimulate adhesion molecules, CCL2, ICAM1, VCAM1 and cytokines, IL1β and IL6. This activation is through the toll like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) pathway that activates nuclear factor-κB and increases monocyte chemotaxis. Inhibition of monocyte exosome release reverses endothelial cell activation and monocyte chemotaxis. Our study suggests that activated monocytes have an impact on brain vascular function through intercellular exosome signaling.
Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids.
Intravenous drug use (IVDU) is the major risk factor in the development of HIV-related pulmonary arterial hypertension (HRPAH); however, the pathogenesis of HRPAH in association with IVDU has yet to be characterized. Endothelial injury is considered to be an initiating factor for pulmonary vascular remodeling in animal models of PAH. Our previous study shows that simultaneous exposure to HIV-Trans-activator of transcription (Tat) and cocaine exacerbates both disruption of tight junction proteins and permeability of human pulmonary artery endothelial cells compared with either treatment alone. We here now demonstrate that this HIV-Tat and cocaine mediated endothelial dysfunction accompanies with increase in hydrogen peroxide and superoxide radicals generation and involves redox sensitive signaling pathway. Pretreatment with antioxidant cocktail attenuated the cocaine and Tat mediated disassembly of Zonula Occludens (ZO)-1 and enhancement of endothelial monolayer permeability. Furthermore, inhibition of NADPH oxidase by apocynin or siRNA-mediated knockdown of gp-91phox abolished the Tat/cocaine-induced reactive oxygen species (ROS) production, suggesting the NADPH oxidase mediated generation of oxidative radicals. In addition, ROS dependent activation of Ras and ERK1/2 Kinase was observed to be mediating the TJP-1 disassembly, and endothelial dysfunction in response to cocaine and Tat exposure. In conclusion, our findings demonstrate that Tat/cocaine -mediated production of ROS activate Ras/Raf/ERK1/2 pathway that contributes to disruption of tight junction protein leading to pulmonary endothelial dysfunction associated with pulmonary vascular remodeling.